
Automated synthesis:
going distributed

Anca Muscholl

CSL 2016, Marseille
joint work with I. Walukiewicz

LaBRI Bordeaux and TUM-IAS Munich

Motivation

Computing paradigms

 High performance

Data: intrinsically distributed

multi-core processors

mobile systems, robots,…

cloud

Concurrent programs

Hard to write…

shared data dependencies

synchronization side-effects

corner-case errors, testing has low coverage

traditional exploration: too many interleavings

… and to verify

Motivation

Error-free programs are rare…

 Error recovery: accept the reality

Monitoring = knowledge for recovery

Control = recovery from bad states

Motivation

Specific challenges for concurrent programs:

states are distributed

error recovery (strategy) must be distributed

Question: what means “distributed”?

Mazurkiewicz trace theory:

 A mathematical framework for
distributed monitoring and control

This talk:

Outline

❖ Motivating examples

❖ Mazurkiewicz traces

❖ Distributed monitoring

❖ Distributed control

❖ Conclusions

Programs

Multi-threaded programs with shared variables:

Synchronization operations:

Locks or atomic read/writes, e.g. CAS = compare-and-swap

r(T,x) thread T reads from variable x

w(T,x) thread T writes into variable x

Properties

Atomicity violations: interference from other threads

Order violations: unintended order between threads

97% of concurrency bugs (not counting deadlocks):

e.g. race conditions

Learning from mistakes - a comprehensive study on real world concurrency
bug characteristics [Lu et al., ASPLOS’08]

Races

type list {int data; list *next}
list *head

Thread 1

1: t1 = new(list);
2: t1.data = 42;
3: t1.next = head;
4: acq(lock)
5: head = t1
6: rel(lock)

Thread 2

 7: t2 = head;
 8: acq(lock)
 9: head = head.next
10: rel(lock)

head

!
!

unprotected access to shared data

Races

type list {int data; list *next}
list *head

Thread 1

1: t1 = new(list);
2: t1.data = 42;
3: t1.next = head;
4: acq(lock)
5: head = t1
6: rel(lock)

Thread 2

 7: t2 = head;
 8: acq(lock)
 9: head = head.next
10: rel(lock)

head

!
!

"
t1

Races

type list {int data; list *next}
list *head

Thread 1

1: t1 = new(list);
2: t1.data = 42;
3: t1.next = head;
4: acq(lock)
5: head = t1
6: rel(lock)

Thread 2

 7: t2 = head;
 8: acq(lock)
 9: head = head.next
10: rel(lock)

!

head

!

"
t1

Races

type list {int data; list *next}
list *head

Thread 1

1: t1 = new(list);
2: t1.data = 42;
3: t1.next = head;
4: acq(lock)
5: head = t1
6: rel(lock)

Thread 2

 7: t2 = head;
 8: acq(lock)
 9: head = head.next
10: rel(lock)

!

head

"

delete failed

What are races?

Happens-before order [Lamport,1978]

type list {int data; list *next}
list *head

Thread 1

1: t1 = new(list);
2: t1.data = 42;
3: t1.next = head;
4: acq(lock)
5: head = t1
6: rel(lock)

Thread 2

 7: t2 = head;
 8: acq(lock)
 9: head = head.next
10: rel(lock)

1

2
#

3
#

#
4
#
5
#
6

7
#
8

9

10
#

#

 �

unordered

Outline

❖ Motivating examples

❖ Mazurkiewicz traces

❖ Monitoring

❖ Control

❖ Conclusions

Traces [Mazurkiewicz 1977]

Finite alphabet of actions ⌃

Conflict relation D ✓ ⌃⇥ ⌃

Word

total order

(symmetric)



Trace

partial order �⇤

 iff

 and in conflictai, aj

i < ji � ja1a2 · · · an
1 < 2 < · · · < n

Traces

type list {int data; list *next}
list *head

Thread 1

1: t1 = new(list);
2: t1.data = 42;
3: t1.next = head;
4: acq(lock)
5: head = t1
6: rel(lock)

Thread 2

 7: t2 = head;
 8: acq(lock)
 9: head = head.next
10: rel(lock)

Word (total order)

21

1 3 4 5 6

7 8 9 10

!

! ! !

!!!!
!

Trace (partial order)

2

3 7 8 9 10 4 5 6

1 2 7 8 39 10 4 5 6

Conflict: same thread or same lock
race

Traces

1 3 4 5 6

7 8 9 10

!

! ! !

!!!!
!

Trace (partial order)

2

Word (total order)

21 3 7 8 9 10 4 5 6

1 2 7 8 39 10 4 5 6

 Trace language

all linearizations of a set of trace partial orders

word language closed under ab = ba ,
a, b not in conflict

=

Outline

❖ Motivating examples

❖ Mazurkiewicz traces

❖ Distributed monitoring

❖ Distributed control

❖ Conclusions

Monitoring

Centralized?

Monitoring

Decentralized!

no global synchronization
required

localized failure detection
and recovery: more efficient

Monitoring

Synchronization
between local monitors?

❖ communication channels

❖ shared memory

It depends on the architecture

Zielonka automata [Zielonka 1989]

monitor finite-state automaton=

 rendez-vous +

 exchange of information

synchronization:

Example
compare-and-swap CAS (T,x,old,new)

 T is a thread, x a shared variable

if the value of x is old, then replace it by new;

 otherwise do nothing

returns 1 if the value was replaced, 0 otherwise

Example

compare-and-swap CAS (T,x,old,new)

if the value of x is old, then replace it by new;
otherwise do nothing

y = CAS (T,x,old,new)

T x

s old

news’

s v

v

y = CAS (T,x,old,new)

T x

s’’
v old6=

Zielonka automaton

❖ fixed set of processes
❖ one finite-state automaton per process

❖ each action a synchronizes a fixed set of processes:

dom(a) ✓ P

P

By executing a , processes in exchange
information about their states.

dom(a)

Zielonka’s theorem

Construction of deterministic Zielonka automaton for
every regular trace language.

Crux: finite gossiping

Complexity: from several exponentials down to

From a DFA of size s, constructs equivalent Zielonka
automaton on p processes with states.4p

4

· sp
2

[Genest-Gimbert-M.-Walukiewicz, 2010]

[Zielonka, 1989]

Synthesis more practical

Construction of deterministic Zielonka
automata for regular trace languages:
quadratic-time when the communication
between processes is acyclic.

Is quadratic-time good enough?

Not if we start with very large DFA. Use patterns.

[Krishna-M., 2013]

a b,c
e

d f,g

Monitoring: summary

❖ Zielonka’s construction: general-purpose solution for distributed
runtime monitoring with finite memory.

❖ The general construction requires polynomial memory on each process.

❖ Lightweight construction for acyclic architectures.

❖ Zielonka’s construction: also used for other kinds of synchronization,
e.g. messages.

Outline

❖ Motivating examples

❖ Mazurkiewicz traces

❖ Distributed monitoring

❖ Distributed control

 Pnueli-Rosner

 Ramadge-Wonham

❖ Conclusion

Error recovery: control

monitoring control

error detection restrict program execution
prevent error propagation

…

Control: basics

input output
C

C: device reacting continuously

function C : {0, 1}⇤ ! {0, 1}

Church (1957)

Given: specification
relating inputs/outputs

Compute C that satisfies

S ✓ {0, 1}! ⇥ {0, 1}!

S

for all w 2 {0, 1}! : (w, C(w)) ! S

[Rabin, 1972] If S is omega-regular the existence of a controller can
be decided. If “yes”, then there exists a finite-state controller C.

Given an architecture and an omega-regular specification S, construct
controllers C1, C2,… such that all controlled behaviors belong to S.

Distributed control

input1 output1
C1

input2 output2
C2

msg

synchronous behavior

input1

input2

msg

output1

output2

1

0 1

1

1

0

00

1

1

0
0 1

1

0

0

0

[Pnueli-Rosner, 1990] Distributed reactive systems are hard to synthesize.

Pnueli-Rosner

Distributed synthesis is in general undecidable. It is decidable iff the
architecture is a pipeline (non-elementary complexity).

Undecidability comes from partial information:

[Peterson-Reif,1979] Multi-person alternation

Basic problem: Specification may talk about inputs that are not seen by
some process.

[Pnueli-Rosner, 1990]

Pnueli-Rosner : summary

❖ Simple extension of the Church setting

❖ Very few cases are decidable

❖ Unsolved problem: define specifications that are compatible

with the architecture

❖ Open: decidable architectures when controllers can add

information to messages

[Finkbeiner-Schewe, 2005] Uniform distributed synthesis

[Kupferman-Vardi, 2001] Synthesizing distributed systems

[Gastin-Sznajder, 2013] External specifications

Outline

❖ Motivating examples

❖ Mazurkiewicz traces

❖ Distributed monitoring

❖ Distributed control

 Pnueli-Rosner

 Ramadge-Wonham

❖ Conclusion

Control approach

Approach based on

❖ Zielonka automata

❖ Ramadge-Wonham supervisory control

[Ramadge-Wonham,1989] The control of discrete-event systems

❖ Given: Plant (automaton) A with controllable (system) actions
and uncontrollable (environment) actions, and property P.

❖ Compute controller C such that A x C satisfies P.
C must allow all uncontrollable actions.

Ramadge-Wonham

plant A

controller C

?

X

Add finite state information and restrict some of the
controllable transitions of A, to satisfy given property P.

! P

Zielonka automata

❖ fixed set of processes

❖ one finite-state automaton per process

❖ each action a is located on a fixed set of processes

dom(a) ✓ P

P

By executing a , processes in exchange
information about their states.

dom(a)

Distributed control

❖ Given: Zielonka automaton A with controllable (system)
actions and uncontrollable (environment) actions, and
specification S.

❖ Compute another Zielonka automaton (controller) C such
that A x C satisfies S.

 C must allow all uncontrollable actions.

Controllers are local and exchange information in order to satisfy S.

Processes P1, P2, S S P2P1

req1
ask1 loc1

rel1

P1 ask1

ask1
rel1 rel2

ask2

req1 req2loc1 loc2

req1, req2 uncontrollable

Property: loc(al) action is possible only if the other process already rel(eased)

Control strategy: enables loc1 action only if the communication with S

tells P1 that P2 already did rel2 (or vice versa).

+

Controlling Zielonka automata

Setting:

❖ A controller for each process.

❖ Controller of process p can disallow some of p’s controllable
actions.

❖ Control decisions for p depend on information in the causal
past of p, i.e., including communication with other controllers.

Decidability status is open. No hidden information.

Control & Zielonka automata

Some partial decidability results:

[Madhusudan-Thiagarajan-Yang, 2005] Decidability for restricted Zielonka
automata: every process misses only bounded knowledge. MSO specifications.

[Gastin-Lerman-Zeitoun, 2004] Decidability for restricted automata: series-parallel
systems. Reachability specifications.

[Genest-Gimbert-M-Walukiewicz, 2013] Decidability for acyclic process
communication. Local reachability (blocking). Complexity is Tower(2,n)-complete.

[M-Walukiewicz, 2014] Decidability for acyclic process communication. Local
parity specifications. Complexity is Tower(2,n)-complete.

Control & Zielonka automata

Control is decidable (EXPTIME-complete).

…

This architecture is undecidable in the Pnueli-Rosner setting.

Control & Zielonka automata

Why is control for Zielonka automata still open?

Because there is no bound on the information that controllers
need to exchange.

❖ Control for Zielonka automata reduces to satisfiability of
monadic second-order (MSO) formula over the event structure
of the automaton.

❖ These event structures can be rather complicated (grids), and
MSO satisfiability is undecidable in general.

Why is control for Zielonka automata still open?

Because there is no bound on the information that controllers
need to exchange.

Variant 1: controllers do not exchange additional information.

The control problem for Zielonka automata with no exchange of
additional information by controllers is undecidable.

[M., Schewe 2013]

Why is control for Zielonka automata still open?

Because there is no bound on the information that controllers
need to exchange.

Variant 2: Zielonka automata where processes are stateless.
They are called negotiations (Esparza, Desel 2013].

The control problem for sound negotiations, wrt. reachability or safety
conditions, can be solved in polynomial time.

Controlling Zielonka automata: summary

❖ Simple extension of the Ramadge-Wonham control setting

❖ Decidable for acyclic communication and local parity

specifications

❖ Polynomial algorithms for sound negotiations

❖ Open: cyclic architectures

❖ Unsolved: understanding event structures of Zielonka automata

Applications to (boolean) program synthesis

Given a multi-threaded program with shared memory, add (boolean)
variables that control the execution in order to satisfy a given
property (e.g., safety, parity).

Program Zielonka automaton

Zielonka controllerControlled program
CAS

vars as procs

Other synthesis approaches

❖ Program repair [Jobstmann, Griesmeyer, Bloem]

❖ Partial program synthesis [Solar-Lezama]

❖ Quantitative synthesis of synchronization [Alur et al.]

Models:

Rendez-vous synchronization à la CCS

❖ Mazurkiewicz traces: powerful automata-theoretic reasoning about
concurrent programs in reach.

❖ Distributed monitoring: synthesis of monitors through Zielonka
construction.

❖ Distributed control: synthesis of controllers that can alter program
behavior.

Conclusion

Error recovery for concurrent programs
requires distributed monitoring and control

❖ Synthesis of distributed monitors using Lamport’s vector clocks (or
any unbounded memory)?

❖ Synthesis of distributed monitors if the set of (active) processes in
the system is unknown?

❖ Our monitor/synthesis algorithm is conservative (no additional
synchronizations). If we allow additional synchronizations, how
should they be quantified?

Outlook

Thank you!

