
Game Semantics Approach to

Higher-Order Complexity

Hugo Férée

September 2, 2016

LCC 2016

Introduction

• Computability and complexity are defined for first-order

functions (i.e. Σ∗ → Σ∗) in many di�erent ways

• Same for second-order functions,e.g. (Σ∗ → Σ∗)→ Σ∗

(to a lesser extent)

• For third-order functions and above?

• a few incomplete a�empts to define complexity

• not even a unique notion of computability

2/32

Motivations

• First-order is su�icient to define

computability/complexity for countable sets (e.g.

integers, finite graphs, matrices, etc.)

• Second-order is required for computations over some

uncountable sets (e.g. real numbers)

• Higher orders are required for some "larger spaces",

especially for complexity

• Higher-order functions appear naturally in functional

programming languages

3/32

First-order complexity

Several computational models, equivalent for complexity:

Machine models:

Complexity = a bound on running time given

a bound on the input size

Function algebras:

Cobham 1965 : bounded recursion on notation

Others

Logic-based (linear logic), program

interpretations, etc.

4/32

Second-order complexity

Definition (Mehlhorn (1976))

fptime2 = [fptime, Application, Composition, Extension,R]

R(x0, F ,B, x).

x0 if x = 0

t if |t| ≤ B(x)

B(x) otherwise.

where t = F (x,R(x0, F ,B, b
x

2

c)).

Theorem (Kapron & Cook 1996)

fptime2 is the class of functions computed by an oracle Turing

machine in second-order polynomial time.

5/32

Oracle Turing machine

M

f

w f(w)

Definition

F : (Σ∗ → Σ∗) → Σ∗ is computed by an oracle Turing ma-

chineM if for any oracle f : Σ∗ → Σ∗,Mf
computes F (f).

6/32

Second order complexity

Definition (Time complexity)

The complexity of a machine is an upper bound on its com-

putation time w.r.t the size of its input.

3 size of a finite word

? size of an order 1 function

Definition (Size of a function)

The size of f : Σ∗ → Σ∗ is |f | : N→ N :

|f |(n) = max

|x|≤n
|f (x)|.

7/32

Second order complexity

Definition (Time complexity)

The complexity of a machine is an upper bound on its com-

putation time w.r.t the size of its input.

3 size of a finite word

? size of an order 1 function

Definition (Size of a function)

The size of f : Σ∗ → Σ∗ is |f | : N→ N :

|f |(n) = max

|x|≤n
|f (x)|.

7/32

Second order polynomial time

Definition (Second order polynomials)

P := c | X | Y〈P〉 | P + P | P × P

Example

P(X ,Y) = (Y〈X × Y〈X + 1〉〉)2

Definition (fptime2)

A second order function is computable in polynomial time if

it is computed by an oracle Turing machine whose running

time is bounded by a second order polynomial.

8/32

Some higher order models

• Kleene schemata

• Kleene associates

• Berry-Curien sequential algorithms

• . . .

• pcf (Sco�, Plotkin)

λ-calculus over N + fixpoint combinator.

7 No simple underlying complexity notion.

• bff (Cook, Urquhart)

λ-calculus + fptime +R (2
nd

-order bounded recursion)

7 Defines only one complexity class (no exptime, etc.)

7 Misses some intuitively feasible functionals.

9/32

Example (Irwin, Kapron, Royer)

fx(y) = 1 ⇐⇒ y = 2
x

Φ,Ψ : ((N→ N)→ N)× N→ N

Φ(F , x) =

0 if F (fx) = F (λy.0)

1 otherwise.

Φ ∈ bff3

Ψ(F , x) =

0 if F (fx) = F (λy.0)

2
x

otherwise.

Ψ 6∈ bff3, but Ψ is "as feasible as" Φ.

10/32

The size issue

Main issue: No notion of size for functions of order 2 and

above

In particular, for second-order, the modulus of continuity

should be taken into account

Solution:

• A model where the interaction between machine and

input is a dialogue.

• Size ' "length" of the dialogue.

11/32

Computation = dialogue

O: What is f (x)?

P: What is x?

O: x equals 4.

P: f (x) equals 2.

Figure 1: Dialogue between a Turing machine (P) computing f and

its opponent (O) computing x .

11/32

Computation = dialogue

O: What is F (f)?

P: What is f (x)?

O: What is x?

P: x equals 4.

O: f (x) equals 2.

. . .

P: What is f (x)?

O: What is x?

P: x equals 2.

O: f (x) equals 9.

P: F (f) equals 16.

Figure 1: Dialogue between an otm (P) computing F and its

opponent (O) computing f .
11/32

Computation = dialogue

O: What is Φ(F)?

Second order dialogue (F (f1))

.

.

.

Second order dialogue (F (fk))

P: Φ(F) equals 11.

Figure 1: Dialogue between an order 3 machine (P) computing Φ

and its opponent (O) computing F .

11/32

Game Semantics

Origin: provide a fully abstract semantics for pcf

Solution: (Hyland & Ong, Nickau, Abramsky):

• functions↔ strategies

• function application↔ confrontation of strategies

Not made with e�ectivity/complexity in mind, although

Nickau mentionned it.

12/32

Game Semantics

Origin: provide a fully abstract semantics for pcf

Solution: (Hyland & Ong, Nickau, Abramsky):

• functions↔ strategies

• function application↔ confrontation of strategies

Not made with e�ectivity/complexity in mind, although

Nickau mentionned it.

12/32

Arena

An arena is a set of(player and opponent) moves (questions or

answers) as well as a subset of initial questions and an

enabling relation.

The answers enabled by an initial question are called final

answers.

13/32

Arenas for finite types

aP0 aP1

qO

.aPn

Figure 2: Arena for the base type N

14/32

Arenas for finite types

Aσ Aτ

.
i1 in i′1 i′k

Figure 2: Arena Aσ×τ built from Aτ and Aσ

14/32

Arenas for finite types

A⊥
σ

Aτ

. . .

. . .
i1 in

i′1 i′k

Figure 2: Arena Aσ→τ built from Aτ and Aσ

14/32

Arenas for finite types

aO0 aO1

qP

.
aOn

a′P0 a′P1

q′O

.
a′Pn

Figure 2: Arena for type N→ N

14/32

Arenas for finite types

aP0 aP1

qO

.
aPn

a′O0 a′O1

q′P

.
a′On

a′′P0 a′′P1

q′′O

.
a′′Pn

Figure 2: Arena for type (N→ N)→ N

14/32

Plays & Rules

Definition (Play)

A play is a list of named moves, i.e. m[α] (m ∈ A, α ∈ N).

A play p is said to be:

• justified: if every non initial move is justified by a

previous move in p ;

• well-opened: if there is only one initial move, at the

beginning of p ;

• alternating: if two consecutive moves belong to di�erent

protagonists ;

• strictly scoped: if answering a question prevents further

moves to be justified by this question ;

• strictly nested: if question/answer pairs form a valid

bracketing.

15/32

Innocent Strategies

Definition (Strategy)

A strategy is a partial function from plays to moves.

Definition (Innocent strategy)

A strategy is innocent if its output only depends on its current

view of the play.

16/32

Confrontation

If τ = τ1 × . . . τn → N and s, s1, . . . sn are strategies on the

arenas Aτ ,Aτ1
, . . .Aτn , then the confrontation of s agains

s1, . . . , sn is defined this way:

• the play p starts with the initial question of Aτ

• the confrontation stops when s plays a final answer

• the play is successively extended this way:

• if s is defined on p, then p is extended with s(p)

• if s(p) is not a final answer, it belongs to one of the Ai

and p contains a play pi in Ai

• the play is extended with si(pi) (+renaming)

The final play H(s, s1, . . . , sn) is the history of the

confrontation, and this defines a partial function s[] from

argument strategies to final answers. 17/32

Games for pcf

Given a finite type τ , the corresponding game is defined by

innocent strategies playing justified, alternating, well-opened,

strictly-nested, . . . plays in the arena Aτ .

Definition

Such a strategy s represents F : τ1 × · · ·× → N if whenever

s1, . . . , sn represent f1 : τ1, . . . , fn : τn, then

s[s1, . . . , sn] represents F (f1, . . . , fn)

18/32

E�ectivity

Our presentation of game semantics allows to define an

explicit encoding of moves and names: for every game on a

finite type τ ,

• an answer of the form an (i.e. representing n ∈ N) can be

encoded by a binary word of size O(log
2
(n)) ;

• the questions can be encoded by words of bounded size ;

• names are integers→ usual binary encoding ;

• this encoding can be extended to plays ;

• a strategy s can be represented by a partial function s̄ of

type Σ∗ → Σ∗

19/32

Computability and complexity

Definition

A strategy is s is computable if s̄ is computable.

Definition a�empt

A function is computable in time t, if it is represented by a strat-

egy s such that s̄ is computable in time t.

Theorem

Every computable function has a polynomial strategy.

Proof.

s can gain time by asking many useless questions.

20/32

Computability and complexity

Definition

A strategy is s is computable if s̄ is computable.

Definition a�empt

A function is computable in time t, if it is represented by a strat-

egy s such that s̄ is computable in time t.

Theorem

Every computable function has a polynomial strategy.

Proof.

s can gain time by asking many useless questions.

20/32

Computability and complexity

Definition

A strategy is s is computable if s̄ is computable.

Definition a�empt

A function is computable in time t, if it is represented by a strat-

egy s such that s̄ is computable in time t.

Theorem

Every computable function has a polynomial strategy.

Proof.

s can gain time by asking many useless questions.

20/32

Computability and complexity

Definition

A strategy is s is computable if s̄ is computable.

Definition a�empt

A function is computable in time t, if it is represented by a strat-

egy s such that s̄ is computable in time t.

Theorem

Every computable function has a polynomial strategy.

Proof.

s can gain time by asking many useless questions.

20/32

Size of a strategy

Definition (Size of a play)

= size of its binary encoding.

Definition (Size of a strategy)

The size Ss of a strategy s in the game of type τ = τ1× · · · ×
τn → N is a bound on the size of the play H produced by the

confrontation of s versus argument strategies:

Ss(b1, . . . , bn) = sup{|H(s, s1, . . . sn)| : ∀i, Ssi 4τi bi}

Additionally, for all F ,B : τ , F 4τ B if:

(∀i, Ssi 4τi bi) =⇒ F (Ss1
, . . . , Ssn) ≤ B(b1, . . . , bn)

21/32

Examples

Example

• k ∈ N has a strategy of size about log
2
(k)

(plays are of the form: q, ak[0])

• g : N→ N has a strategy of size about

|g|(n) = max|x|≤n |g(x)|
(plays are of the form: q, q′[0], a′

x
[1], a

g(x)[0])

• F : (N→ N)→ N has a strategy whose size depends on

its values and on its modulus of continuity.

22/32

Game machines

Definition (Game machine)

otm which simulates a strategy:

• initial state↔ initial question

• oracle call↔ (encoded) player move

• oracle answer↔ (encoded) opponent move

• final state + tape’s content↔ final answer

Proposition

s is simulated by a game machine ⇐⇒ s is computable.

23/32

Complexity

We can define the complexity of a strategy, and in particular:

size 4 complexity

size ' smallest relativized complexity

Definition

f ∈ pcf is computable in time T if there is a game machine

simulating an innocent strategy for f in time T .

Remark

If s represents a pcf function f : τ , then the size and complexity

functions for s have type τ .

24/32

Higher order polynomials

Definition (Higher type polynomials)

htp = simply-typed λ-calculus, with + and ×.

Remark

• Order 1 htp = usual polynomials.

• Order 2 htp = second order polynomials.

25/32

Higher order polynomial time complexity

Definition (poly)

f ∈ pcf is polynomial time computable (f ∈ poly), if it has a

strategy computed by a (higher order) polynomial time ma-

chine.

26/32

Results

Proposition

For every finite type τ , the complexity of the identity function

of type τ → τ is about λb.2 · b.

Similarly, composition, projections and expansion also have

polynomial time complexity.

Remark

If b : σ and B : σ → τ bound the complexity (resp. size) of

f : σ and F : σ → τ , then B(b) bounds the complexity (resp.

size) of F (f).

27/32

Results

Proposition

Bounded recursion on notation is polynomial-time computable.

Proof.

It can be computed by |x| iteration of F applied to x an input

bounded by the size of B on x . Its complexity is bounded by:

λn0λGλHλn. n · G(H(n,B(n) + n0)) + n0.

28/32

Results

Theorem

• fptime = bff1 = poly1

• fptime2 = bff2 = poly2

• bff ⊆ poly

• bff3 (poly3 (cf. example Ψ)

• poly is stable by composition

=⇒ this complexity class is a good candidate for a

generalization of fptime at all finite types.

29/32

Summary

We have defined:

• a notion of size for "pcf strategies" ;

• a machine model adapted to games ;

• a notion of complexity for pcf functions ;

• a polynomial time computable class for pcf.

This class verifies all the expected properties.

The notion of complexity is generic enough to define other

classes like:

• exponential time

• sub-linear time (with smaller names?)

• space/non-deterministic complexity

• query/communication/. . . complexity 30/32

Extension to more games

These notions extend to other kind of games as soon as:

• names, moves and plays have a binary encoding

(=⇒ countable arena)

• the confrontation can be defined:

• finite-depth acyclic arena

• well-opened, alternating, justified plays

In particular, strictly-nested plays or innocent strategies are

not required to define size and complexity.

31/32

Further work

• Further justify the relevance of poly (e.g. provide

characterizations)

• Study other (deterministic time) complexity classes

• Do higher-order classes help shed light on first-order

classes?

• New complexity notions exclusive to higher-order

• Are there other meaningful "sequential games" than

those for pcf?

• Generalize to other games, e.g. :

• arenas with cycles =⇒ inductive/co-inductive types

• no alternating rule =⇒ parallelism

32/32

	State of the art

