Game Semantics Approach to Higher-Order Complexity

Hugo Férée September 2, 2016 LCC 2016

- Computability and complexity are defined for first-order functions (i.e. $\Sigma^* \to \Sigma^*$) in many different ways
- Same for second-order functions,e.g. $(\Sigma^* \to \Sigma^*) \to \Sigma^*$ (to a lesser extent)
- For third-order functions and above?
 - · a few incomplete attempts to define complexity
 - not even a unique notion of computability

Motivations

- First-order is sufficient to define computability/complexity for countable sets (e.g. integers, finite graphs, matrices, etc.)
- Second-order is required for computations over some uncountable sets (e.g. real numbers)
- Higher orders are required for some "larger spaces", especially for complexity
- Higher-order functions appear naturally in functional programming languages

Several computational models, equivalent for complexity:

Machine models: Complexity = a bound on running time given a bound on the input size

Function algebras:

Cobham 1965 : bounded recursion on notation

Others

Logic-based (linear logic), program interpretations, etc.

Second-order complexity

Definition (Mehlhorn (1976))

 $FPTIME_2 = [FPTIME, Application, Composition, Extension, R]$

$$\mathcal{R}(x_0, F, B, x). \begin{cases} x_0 \text{ if } x = 0\\ t \text{ if } |t| \le B(x)\\ B(x) \text{ otherwise.} \end{cases}$$

where $t = F(x, \mathcal{R}(x_0, F, B, \lfloor \frac{x}{2} \rfloor)).$

Theorem (Kapron & Cook 1996)

FPTIME₂ is the class of functions computed by an oracle Turing machine in second-order polynomial time.

Oracle Turing machine

Definition

 $F : (\Sigma^* \to \Sigma^*) \to \Sigma^*$ is computed by an oracle Turing machine \mathcal{M} if for any oracle $f : \Sigma^* \to \Sigma^*$, \mathcal{M}^f computes F(f).

Second order complexity

Definition (Time complexity)

The complexity of a machine is an upper bound on its computation time w.r.t the size of its input.

- \checkmark size of a finite word
 - ? size of an order 1 function

Second order complexity

Definition (Time complexity)

The complexity of a machine is an upper bound on its computation time w.r.t the size of its input.

- \checkmark size of a finite word
 - ? size of an order 1 function

Definition (Size of a function)

The size of $f: \Sigma^* \to \Sigma^*$ is $|f|: \mathbb{N} \to \mathbb{N}:$

$$|f|(n) = \max_{|x| \le n} |f(x)|.$$

Second order polynomial time

Definition (Second order polynomials)

$$P := c \mid X \mid Y \langle P \rangle \mid P + P \mid P \times P$$

Example

$$P(X, Y) = (Y\langle X \times Y \langle X + 1 \rangle \rangle)^2$$

Definition (FPTIME₂)

A second order function is computable in polynomial time if it is computed by an oracle Turing machine whose running time is bounded by a second order polynomial.

Some higher order models

- Kleene schemata
- Kleene associates
- Berry-Curien sequential algorithms
- ...
- PCF (Scott, Plotkin)
 - λ -calculus over \mathbb{N} + fixpoint combinator.
 - X No simple underlying complexity notion.
- BFF (Cook, Urquhart)

 λ -calculus + fptime + \mathcal{R} (2nd-order bounded recursion)

- X Defines only one complexity class (no EXPTIME, etc.)
- X Misses some intuitively feasible functionals.

Example (Irwin, Kapron, Royer)

$$f_x(y) = 1 \iff y = 2^x$$

$$\Phi, \Psi : ((\mathbb{N} \to \mathbb{N}) \to \mathbb{N}) \times \mathbb{N} \to \mathbb{N}$$

$$\Phi(F, x) = \begin{cases} 0 & \text{if } F(f_x) = F(\lambda y.0) \\ 1 & \text{otherwise.} \end{cases}$$

 $\Phi\in \mathsf{BFF}_3$

$$\Psi(F, x) = \begin{cases} 0 & \text{if } F(f_x) = F(\lambda y.0) \\ 2^x & \text{otherwise.} \end{cases}$$

 $\Psi \notin BFF_3$, but Ψ is "as feasible as" Φ .

Main issue: No notion of size for functions of order 2 and above

In particular, for second-order, the modulus of continuity should be taken into account

Solution:

- A model where the interaction between machine and input is a dialogue.
- Size \simeq "length" of the dialogue.

- O: What is f(x)? P: What is x?

- O: x equals 4.P: f(x) equals 2.

Figure 1: Dialogue between a Turing machine (P) computing f and its opponent (O) computing x.

Computation = dialogue

- O: What is F(f)? P: What is f(x)? O: What is x?
- P: $x \text{ equals } 4.^{\prime}$
- O: f(x) equals 2.

. . .

- P: What is f(x)?
- O: What is $x?_{5}$
- **P**: *x* equals 2.
- **O**: f(x) equals 9.
- P: F(f) equals 16.

Figure 1: Dialogue between an OTM (P) computing F and its opponent (O) computing f.

O: What is $\Phi(F)$? Second order dialogue $(F(f_1))$:

Second order dialogue $(F(f_k))$

P: $\Phi(F)$ equals 11.

Figure 1: Dialogue between an order 3 machine (P) computing Φ and its opponent (O) computing *F*.

Origin: provide a fully abstract semantics for PCF Solution: (Hyland & Ong, Nickau, Abramsky):

- functions \leftrightarrow strategies
- function application \leftrightarrow confrontation of strategies

Origin: provide a fully abstract semantics for PCF Solution: (Hyland & Ong, Nickau, Abramsky):

- functions \leftrightarrow strategies
- function application \leftrightarrow confrontation of strategies

Not made with effectivity/complexity in mind, although Nickau mentionned it.

An arena is a set of(player and opponent) moves (questions or answers) as well as a subset of initial questions and an enabling relation.

The answers enabled by an initial question are called final answers.

Figure 2: Arena for the base type \mathbb{N}

Figure 2: Arena $\mathcal{A}_{\sigma \times \tau}$ built from \mathcal{A}_{τ} and \mathcal{A}_{σ}

Figure 2: Arena $\mathcal{A}_{\sigma \to \tau}$ built from \mathcal{A}_{τ} and \mathcal{A}_{σ}

Figure 2: Arena for type $\mathbb{N} \to \mathbb{N}$

Figure 2: Arena for type $(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$

Plays & Rules

Definition (Play)

A play is a list of named moves, i.e. $m[\alpha]$ ($m \in A, \alpha \in \mathbb{N}$).

A play *p* is said to be:

- justified: if every non initial move is justified by a previous move in *p*;
- well-opened: if there is only one initial move, at the beginning of *p*;
- alternating: if two consecutive moves belong to different protagonists;
- strictly scoped: if answering a question prevents further moves to be justified by this question ;
- strictly nested: if question/answer pairs form a valid bracketing.

Definition (Strategy)

A strategy is a partial function from plays to moves.

Definition (Innocent strategy)

A strategy is innocent if its output only depends on its current view of the play.

Confrontation

If $\tau = \tau_1 \times \ldots \tau_n \to \mathbb{N}$ and $s, s_1, \ldots s_n$ are strategies on the arenas $\mathcal{A}_{\tau}, \mathcal{A}_{\tau_1}, \ldots \mathcal{A}_{\tau_n}$, then the confrontation of s agains s_1, \ldots, s_n is defined this way:

- the play p starts with the initial question of $\mathcal{A}_{ au}$
- the confrontation stops when s plays a final answer
- the play is successively extended this way:
 - if *s* is defined on *p*, then *p* is extended with *s*(*p*)
 - if s(p) is not a final answer, it belongs to one of the A_i and p contains a play p_i in A_i
 - the play is extended with $s_i(p_i)$ (+renaming)

The final play $H(s, s_1, ..., s_n)$ is the history of the confrontation, and this defines a partial function s[] from argument strategies to final answers.

Given a finite type τ , the corresponding game is defined by innocent strategies playing justified, alternating, well-opened, strictly-nested, ... plays in the arena A_{τ} .

Definition

Such a strategy *s* represents $F : \tau_1 \times \cdots \times \to \mathbb{N}$ if whenever s_1, \ldots, s_n represent $f_1 : \tau_1, \ldots, f_n : \tau_n$, then $s[s_1, \ldots, s_n]$ represents $F(f_1, \ldots, f_n)$

Our presentation of game semantics allows to define an explicit encoding of moves and names: for every game on a finite type τ ,

- an answer of the form *a_n* (i.e. representing *n* ∈ ℕ) can be encoded by a binary word of size *O*(log₂(*n*));
- the questions can be encoded by words of bounded size ;
- names are integers \rightarrow usual binary encoding ;
- this encoding can be extended to plays ;
- a strategy s can be represented by a partial function \overline{s} of type $\Sigma^*\to\Sigma^*$

Definition

A strategy is *s* is computable if \overline{s} is computable.

Definition

A strategy is *s* is computable if \overline{s} is computable.

Definition attempt

A function is computable in time t, if it is represented by a strategy s such that \overline{s} is computable in time t.

Definition

A strategy is *s* is computable if \overline{s} is computable.

Definition attempt

A function is computable in time t, if it is represented by a strategy s such that \overline{s} is computable in time t.

Theorem

Every computable function has a polynomial strategy.

Proof.

s can gain time by asking many useless questions.

Definition

A strategy is *s* is computable if \overline{s} is computable.

Size of a strategy

Definition (Size of a play)

= size of its binary encoding.

Definition (Size of a strategy)

The size S_s of a strategy *s* in the game of type $\tau = \tau_1 \times \cdots \times \tau_n \rightarrow \mathbb{N}$ is a bound on the size of the play *H* produced by the confrontation of *s* versus argument strategies:

$$S_s(b_1,\ldots,b_n) = \sup\{|H(s,s_1,\ldots,s_n)| : \forall i, S_{s_i} \preccurlyeq_{\tau_i} b_i\}$$

Additionally, for all $F, B : \tau, F \preccurlyeq_{\tau} B$ if:

$$(\forall i, S_{s_i} \preccurlyeq_{\tau_i} b_i) \implies F(S_{s_1}, \ldots, S_{s_n}) \leq B(b_1, \ldots, b_n)$$

Examples

Example

- k ∈ N has a strategy of size about log₂(k) (plays are of the form: q, a_k[0])
- $g : \mathbb{N} \to \mathbb{N}$ has a strategy of size about $|g|(n) = \max_{|x| \le n} |g(x)|$ (plays are of the form: $q, q'[0], a'_x[1], a_{g(x)}[0]$)
- *F*: (ℕ → ℕ) → ℕ has a strategy whose size depends on its values and on its modulus of continuity.

Game machines

Definition (Game machine)

отм which simulates a strategy:

- initial state \leftrightarrow initial question
- oracle call \leftrightarrow (encoded) player move
- oracle answer \leftrightarrow (encoded) opponent move
- final state + tape's content \leftrightarrow final answer

Proposition

s is simulated by a game machine \iff s is computable.

We can define the complexity of a strategy, and in particular: size \preccurlyeq complexity size \simeq smallest relativized complexity

Definition

 $f \in PCF$ is computable in time *T* if there is a game machine simulating an innocent strategy for *f* in time *T*.

Remark

If s represents a PCF function $f: \tau$, then the size and complexityfunctionsforshavetype τ .

Definition (Higher type polynomials)

 $\texttt{HTP} = \texttt{simply-typed} \ \lambda \texttt{-calculus}, \ \texttt{with} + \texttt{and} \ \times.$

Remark

- Order 1 HTP = usual polynomials.
- Order 2 нтр = second order polynomials.

Definition (POLY)

 $f \in PCF$ is polynomial time computable ($f \in POLY$), if it has a strategy computed by a (higher order) polynomial time machine.

Proposition

For every finite type τ , the complexity of the identity function of type $\tau \rightarrow \tau$ is about $\lambda b.2 \cdot b$.

Similarly, composition, projections and expansion also have polynomial time complexity.

Remark

If $b : \sigma$ and $B : \sigma \to \tau$ bound the complexity (resp. size) of $f : \sigma$ and $F : \sigma \to \tau$, then B(b) bounds the complexity (resp. size) of F(f).

Proposition

Bounded recursion on notation is polynomial-time computable.

Proof.

It can be computed by |x| iteration of *F* applied to *x* an input bounded by the size of *B* on *x*. Its complexity is bounded by:

 $\lambda n_0 \lambda G \lambda H \lambda n$. $n \cdot G(H(n, B(n) + n_0)) + n_0$.

Results

Theorem

- $FPTIME = BFF_1 = POLY_1$
- $FPTIME_2 = BFF_2 = POLY_2$
- BFF \subseteq *POLY*
- BFF₃ \subseteq POLY₃ (cf. example Ψ)
- POLY is stable by composition

 \implies this complexity class is a good candidate for a generalization of <code>fptime</code> at all finite types.

We have defined:

- a notion of size for "PCF strategies";
- a machine model adapted to games ;
- a notion of complexity for PCF functions;
- a polynomial time computable class for PCF.

This class verifies all the expected properties.

The notion of complexity is generic enough to define other classes like:

- exponential time
- sub-linear time (with smaller names?)
- space/non-deterministic complexity
- query/communication/... complexity

These notions extend to other kind of games as soon as:

- names, moves and plays have a binary encoding
 - (\implies countable arena)
- the confrontation can be defined:
 - finite-depth acyclic arena
 - well-opened, alternating, justified plays

In particular, <u>strictly-nested plays</u> or <u>innocent strategies</u> are not required to define size and complexity.

Further work

- Further justify the relevance of POLY (e.g. provide characterizations)
- Study other (deterministic time) complexity classes
- Do higher-order classes help shed light on first-order classes?
- New complexity notions exclusive to higher-order
- Are there other meaningful "sequential games" than those for PCF?
- Generalize to other games, e.g. :
 - arenas with cycles \implies inductive/co-inductive types
 - no alternating rule \implies parallelism