Programming
with an ultrafilter

Christophe Raffalli
LAMA, UMR 5127, Université Savoie Mont Blanc

PLRR 2016, Marseille

What is realizability

A way to prove safety of type systems and programming languages.

Building new models (independance results).

Remark: both approaches use a different meaning of realizing.

In the first case, we do not construct a model.

What is realizability

A way to prove safety of type systems and programming languages.

Building new models (independance results).

Remark: both approaches use a different meaning of realizing.

In the first case, we do not construct a model.

Discovering algorithm (and getting correct implementation).

Motivation

Ultrafilter axiom

Programming with the axiom

There is an ultrafilter on #(N).

This axiom is weak because not any filter may be extended in an ultrafilter.
We will do it in higher-order logic,

using inductive and coinductive types and

call-by-value.

This way, we will use the program in OCaml.

Thanks to a Decap syntax extension providing a CPS.

As application we use Ramsey theorem.

The logic

The individuals: naturals and infinite sets of naturals.

The sorts w for naturals, ¢ for infinite sets, o for propositions and o; — 0.

Expressions: simply typed terms with
-A—>B:o,AAB:oand AVB:oif A,B:o,

-V'xA:0, IxA:0if x:0FA:o0,

-N:w—0B:w— o,

-n<m:wif n,m: w, and many other function symbols using w and (.
- AU,_,Binsort oif u,v:w and A,B: o (NEW).

Rules HOL rules except for the last connective.

Semantics

[w] =N, [¢] = 2(N), [0l = #(?), 0, — 0, = [o,]'"
[A] is therefore a set of values.

[[A]]L is a set of stacks, [[A]]L ={n|Vvel[A],vxm e 1}

- IIA]]LL is a set of terms, I[A]]LL ={t|Vme I[A]]l, txm e 1}
[A — B] = {Axt | Vve[Al,t[x = v] € [B] .

[V Al = ngogog [ALx = 1.

125 Al = Uy [ALx = o]1.

[N(T = {n}.

[Au,_,Bl =[A]if [u] = [v], [B] otherwise.

Ultrafilter

The type of streams

h:l—- w,q:0—C

[h] : the least element, [q] the other elements.

Validates some equations: h(s) < h(q(s)) = 1.

So(s) = 3IX X.

Sns) =T — N(h(s)) A S(q(s)).

S(s) = V¥n S,(s).

Q:(YAMMAu(m, r(n+1))0 >~ Au (0, Au (1, Au(2,..) : S(w)
This definition can be generalized to S(X, s).

Ultrafilter

An inductive false, and a predicate for the ultrafilter

- Ly(s) = VX X,
- Lag(s) =T — N(h(s)) A L(q(s)).
- 1(s) =3n L (s).

Ultra filter predicate

U(s) = S(s) Uge g L(5)

s € Z =11iff [s] is in the ultrafilter Z chosen in the initial model.

Warning: L(x) < L but U(s) « (S(s) Ugegy L) !

Ultrafilter

Ultrafilter axiom.

Free at the equation level: s; € Z and s, € Z implies s;N's, € Z.

The equational level can not be used for programming !

The definition of U(s) means s infinite.

Q : U(w) is provable from Q : S(w) and w € Z.

J Vs, 5, U(sy) — Ulsy) — Uls;Nsy).

K:vs v 7% BYc) —» UGs) — Uls I._,) v (L)

Comprehension C : VX (Vn N(n) — Elp (N p)) « Is S(X, s))
BY(c) ;= V¥n N(n) — B(cn)).

Ultrafilter

The term for intersection

] == As;Asylet (g, s7) = s;()and (n,, s5) = s,()in
if n; = n,then Au (n,, Jsjs)
elseif n; < n,thenJs}s,
else]s; s
: U(sy) — U(sy) — U(syNsy)

If s9,8,€ %, J:S(s;) — S(s;) — S (s;Ns,) by induction on (n, f(s;, s,))
where f(s;, s,) is the number of ignored elements.

If s1,8, ¢ % J:L(s1) = L.(sy) — L(s;Ns,) by induction on 1.+ m.

If ;€% and s, ¢ %,] : S(s;) — L,(s;) — L(s;N's,) by induction on (n,
h(s;) - h(sy)).

fourth case is symmetric

Ultrafilter

The term for separation

K := Ac As CC Ak (Inl(CC Ak, (k (Inr (CC Ak, L ¢ skk,)))))
:Bc) = Us) = U(s I,_,) v UGsT_,)

L:= AcAs Ak Ak, let (n, s') = s()in
ifc(n) = 0thenk;Au(n, CCAkjLcskik,)
elsek, Au (n, CCAKSL cskik))
~Ifs[_, €%]:BYCc) = SGs) = —S(s1,_,) = —~L(s1,_,) = Lby
induction on (n, f(s)) where f(s) is the number of elements x such that ¢(x) =
1 at the beginning of s.
- Second case s [_, € # is symmetric.

- It is here we need _L(s).

10

Ultrafilter

Intuitive meaning

K is a parallel composition

K:BYc) — Us) — U(S fczo) v U(S Fc:1)

evaluates both alternatives in parallel.

J is somehow a scheduler (together with K)

J:U(sy) — U(sy) — UlsyNsy)

Trigger context switching by consuming the input streams.

11

Translation to OCaml : |

type 'a stream = unit = ('a * 'a stream)
let classical inter (sl:(int * 'b) stream) (s2:(int * 'a) stream) () =
let ((nl,), sl) = sl () in let ((n2,x2), s2) = s2 () in

aux2 nl s1 n2 x2 s2

and auxL sl n2 x2 s2

let ((n1,), s1l) = sl () in aux2 nl sl n2 x2 s2

s2 () in aux2 nl sl n2 x2 s2

let ((n2, x2), s2)

and auxR nl sl s2

and aux2 nl sl n2 x2 s2 =
if val (nl < n2) then auxL sl n2 x2 s2 else
if val (nl > n2) then auxR nl sl s2 else ((n2,x2), inter sl s2)

12

Translation to OCaml : K

type ('a, 'b) sum = Inl of 'a | Inr of 'b

let classical split (c : int = ('a,'b) sum) (s : int stream)
mu k — Inl (lazy (mu k1l —
(Inr (lazy (mu k2 — split aux c s k1 k2))) k))

and split aux (c : int = ('a,'b) sum) s k1l k2 =
let (n, s) = s () in
match c n with
| Inl x — ((n,x), lazy (mu k1 — split aux c s kl k2)) Kkl
| Inr x — ((n,x), lazy (mu k2 — split aux c s k1 k2)) k2

13

Ramsey Ultrafilter

open Ultrafilter
let classical omega n () = (n, omega (val(n+l)))

let classical colorl (c : int => int => (unit, unit) sum) n =

Ultrafilter.split (c n) (omega (val(n+l)))
let classical aux c¢ = Ultrafilter.split (colorl c) (omega (val 0))

let classical extract (s : (int * (int * unit) stream) stream) () =

let ((n, s1), s2) = s () in (n, extract (Ultrafilter.inter sl s2))

let classical ramsey c = match aux c with

| Inl s — Inl (extract s) | Inr s — Inr (extract s)

14

Ramsey Ultrafilter, testing !

let classical extract list s n =
if val(n = 0) then [] else let (p,s') = s () in
p :: extract list s' (val (n - 1))

let classical finite ramsey ¢ n = match ramsey c with
| Inl s — Inl (extract list s n) | Inr s — Inr (extract list s n)

let rec pr ch = function [] — () | [x] — Printf.fprintf ch "%d" x
| x::1 — Printf.fprintf ch "%d,%a" x pr 1
let print = function Inl 1 — Printf.printf "Inl(%a)\n%!" pr 1
| Inr U — Printf.printf "Inr(%a)\n%!" pr 1

let test color n = print (?finite ramsey color n?)

15

Ramsey Ultrafilter, testing !

open Ultrafilter
open RamseyU

let classical color n m
val (if (n + m) mod 2
then Inl () else

Hon

nr ())

let = test color 5

CoNOOUA WN

>> 1Inl(0,2,4,6,8)
>>

16

Conclusion

Conclusion

Direct proof of Ramsey: faster program / larger integers

Search among all possilities: slower program / least integers

Can we establich a link ?

The program that look for all possibilities corresponds to what proof ?

Probably the selective ultrafilter axiom.

17

	
	Motivation
	Logic
	Ultrafilter
	Application
	Conclusion

