
Programming

with an ultraxlter

Christophe Rafyalli

LAMA, UMR 5127, Université Savoie Mont Blanc

PLRR 2016, Marseille

Motivation Logic Ultraxlter Application Conclusion

1

What is realizability

A waê to prove sayetê oy têpe sêstems and programming languages.

Building new models (independance results).

Remark: both approaches use a difyerent meaning oy realizing.

In the xrst case, we do not construct a model.

Motivation Logic Ultraxlter Application Conclusion

2

What is realizability

A waê to prove sayetê oy têpe sêstems and programming languages.

Building new models (independance results).

Remark: both approaches use a difyerent meaning oy realizing.

In the xrst case, we do not construct a model.

Discovering algorithm (and getting correct implementation).

Motivation Logic Ultraxlter Application Conclusion

2

Ultra{lter axiom

This aëiom is weak because not anê xlter maê be eëtended in an ultraxlter.

We will do it in higher-order logic,

using inductive and coinductive têpes and

call-bê-value.

This waê, we will use the program in OCaml.

Thanks to a Decap sêntaë eëtension providing a CPS.

As application we use Ramseê theorem.

Motivation Logic Ultraxlter Application Conclusion

Programming with the aëiom

� �There is an ultraxlter on � � .

3

The logic

The individuals: naturals and inxnite sets oy naturals.

The sorts � yor naturals, � yor inxnite sets, � yor propositions and � � � .1 2

Eëpressions: simplê têped terms with

A � B : �, A � B : � and A � B : � iy A, B : �,
��� x A : �, � x A : � iy x : � � A : �,

� : � � �,� : � � �,

n < m : � iy n , m : �, and manê other yunction sêmbols using � and � .

A 	 B in sort � iy u , v : � and A, B : � (NEW).u= v

Rules HOL rules eëcept yor the last connective.

LogicMotivation Ultraxlter Application Conclusion

4

Semantics

� ��1� � � � � � � �� � � �� = �, � = � � , o = � � , � � � = � .1 2 2

� �A is thereyore a set oy values.

� � � � � �	
A is a set oy stacks, A = � | � v � A , v � � � .

� � � � � �	
A is a set oy terms, A = t | � � � A , t � � � .

� � � � � ��	
A � B = �x t | � v � A , t x � v � B .
�� � � ��� x A = A x � � .� � ��� �
�� � � ��� x A = A x � � .� � ��� �

� �� � 	
� n = n .

ì

� � � � � � � � � �A 	 B = A iy u = v , B otherwise.u= v

LogicMotivation Ultraxlter Application Conclusion

5

The type of streams

h : � � �, q : � � �

� � � �h : the least element, q the other elements.

� � � � ��Validates some equations: h s < h q s = 1.

� �� s � � X X.0

� � � � �� � � ��� s = � � � h s � � q s .n+1

�� � � �� s = � n � s .n

� � � ��� � � � ��� � �� : Y �r�n �u n, r n +1 0 � �u 0 , �u 1, �u 2 , � : � ��

� �This dexnition can be generalized to � X, s .

UltraxlterMotivation Logic Application Conclusion

6

An inductive false, and a predicate for the ultra{lter

� �
 s � �X X.0

� � � � �� � � ��
 s = � � � h s �
 q s .n+1

�� � � �
 s = � n
 s .n

� � � � � � � �Warning:
 x �
 but � s � � s 	
 !s��

UltraxlterMotivation Logic Application Conclusion

Ultra xlter predicate

� � � � � �� s = � s 	
 ss��

� �s � � = 1 ify s is in the ultraxlter � chosen in the initial model.

7

Ultra{lter axiom.

Free at the equation level: s � � and s � � implies s � s � �.1 2 1 2

The equational level can not be used yor programming !

� �The dexnition oy � s means s inxnite.

� � � �� : �� is provable yrom � : � � and � � �.
� � � � � � �J : � s , s � s � � s � � s � s .1 2 1 2 1 2

�� ��� � � � �� � � �K : � s � c � c � � s � � s � � � s � .
c = 0 c=1

� � � �� � � � � � � �Comprehension C : �X � n � n � � p � p � X p � � s � X, s
p>n

� �� � � � � � ��� c � � n � n � � c n .

UltraxlterMotivation Logic Application Conclusion

8

The term for intersection

� �� � �� � � ��J � �s �s let n , s = s and n , s = s in1 2 1 1 1 2 2 2

� �� �iy n = n then�u n , Js s1 2 1 1 2

�else iy n < n thenJs s1 2 1 2

�elseJs s1 2

� � � � � �: � s � � s � � s � s1 2 1 2

� � � � � � � � ��Iy s , s � �, J : � s � � s � � s � s bê induction on n , f s , s1 2 1 2 1 2 1 2n

� �where f s , s is the number oy ignored elements.1 2

� � � � � �Iy s , s � �, J :
 s �
 s �
 s � s bê induction on n+m .1 2 n 1 m 2 1 2

� � � � � � �Iy s � � and s � �, J : � s �
 s �
 s � s bê induction on n ,1 2 1 n 2 1 2

� � � ��h s - h s .2 1

yourth case is sêmmetric

UltraxlterMotivation Logic Application Conclusion

9

The term for separation

� � � � � �����K � �c �sCC �k Inl CC �k k Inr CC �k L csk k1 2 1 2

� � � � �� � � �: � c � � s � � s � � � s �
c = 0 c=1

�� � ��L� �c �s�k �k let n, s = s in1 2

� �� � � �iy c n = 0 thenk �u n, CC �k L csk k1 1 1 2

� �� �elsek �u n, CC �k L csk k2 2 1 2

� � � � �� � � �Iy s � � �, J : � c � � s � ¬� s � � ¬
 s � �
 bênc= 0 c= 0 c=1

� � �� � � � �induction on n, f s where f s is the number oy elements x such that c x =

1 at the beginning oy s.

Second case s � � � is sêmmetric.
c =1

� �It is here we need
 s .

UltraxlterMotivation Logic Application Conclusion

10

Intuitive meaning

UltraxlterMotivation Logic Application Conclusion

K is a parallel composition

� � � � �� � � �K : � c � � s � � s � � � s �
c = 0 c=1

evaluates both alternatives in parallel.

J is somehow a scheduler (together with K)

� � � � � �J : � s � � s � � s � s1 2 1 2

Trigger conteët switching bê consuming the input streams.

11

Translation to OCaml : J

type 'a stream = unit � ('a * 'a stream)

let classical inter (s1:(int * 'b) stream) (s2:(int * 'a) stream) () =

let ((n1, _), s1) = s1 () in let ((n2,x2), s2) = s2 () in

aux2 n1 s1 n2 x2 s2

and auxL s1 n2 x2 s2 = let ((n1, _), s1) = s1 () in aux2 n1 s1 n2 x2 s2

and auxR n1 s1 s2 = let ((n2, x2), s2) = s2 () in aux2 n1 s1 n2 x2 s2

and aux2 n1 s1 n2 x2 s2 =

if val (n1 < n2) then auxL s1 n2 x2 s2 else

if val (n1 > n2) then auxR n1 s1 s2 else ((n2,x2), inter s1 s2)

ApplicationMotivation Logic Ultraxlter Conclusion

12

Translation to OCaml : K

type ('a, 'b) sum = Inl of 'a | Inr of 'b

let classical split (c : int � ('a,'b) sum) (s : int stream) =

mu k � Inl (lazy (mu k1 �

(Inr (lazy (mu k2 � split_aux c s k1 k2))) k))

and split_aux (c : int � ('a,'b) sum) s k1 k2 =

let (n, s) = s () in

match c n with

| Inl x � ((n,x), lazy (mu k1 � split_aux c s k1 k2)) k1

| Inr x � ((n,x), lazy (mu k2 � split_aux c s k1 k2)) k2

ApplicationMotivation Logic Ultraxlter Conclusion

13

Ramsey Ultra{lter

open Ultrafilter

let classical omega n () = (n, omega (val(n+1)))

let classical color1 (c : int => int => (unit, unit) sum) n =

Ultrafilter.split (c n) (omega (val(n+1)))

let classical aux c = Ultrafilter.split (color1 c) (omega (val 0))

let classical extract (s : (int * (int * unit) stream) stream) () =

let ((n, s1), s2) = s () in (n, extract (Ultrafilter.inter s1 s2))

let classical ramsey c = match aux c with

| Inl s � Inl (extract s) | Inr s � Inr (extract s)

ApplicationMotivation Logic Ultraxlter Conclusion

14

Ramsey Ultra{lter, testing !

let classical extract_list s n =

if val(n = 0) then [] else let (p,s') = s () in

p :: extract_list s' (val (n - 1))

let classical finite_ramsey c n = match ramsey c with

| Inl s � Inl (extract_list s n) | Inr s � Inr (extract_list s n)

let rec pr ch = function [] � () | [x] � Printf.fprintf ch "%d" x

| x::l � Printf.fprintf ch "%d,%a" x pr l

let print = function Inl l � Printf.printf "Inl(%a)\n%!" pr l

| Inr l � Printf.printf "Inr(%a)\n%!" pr l

let test color n = print (?finite_ramsey color n?)

ApplicationMotivation Logic Ultraxlter Conclusion

15

Ramsey Ultra{lter, testing !

1 open Ultrafilter
2 open RamseyU
3
4 let classical color n m =
5 val (if (n + m) mod 2 = 0
6 then Inl () else Inr ())
7
8 let _ = test color 5
9
10
11
12

>> Inl(0,2,4,6,8)
>>

ApplicationMotivation Logic Ultraxlter Conclusion

16

Conclusion

Direct prooy oy Ramseê: yaster program / larger integers

Search among all possilities: slower program / least integers

Can we establich a link ?

The program that look yor all possibilities corresponds to what prooy ?

Probablê the selective ultraxlter aëiom.

ConclusionMotivation Logic Ultraxlter Application

17

	
	Motivation
	Logic
	Ultrafilter
	Application
	Conclusion

