Bifibrational Parametricity

Federico Orsanigo

The Mathematically Structured Programming Group University of Strathclyde

&

LAMA Université Savoie Mont Blanc

PLRR 2016 Marseille, 2 September 2016

Talk outline

1. Background

System F and $\lambda 2$ -fibrations.

2. Parametricity

Parametricity and Reynolds' relational interpretation.

3. Our model

Bifibrational functorial semantics of parametric polymorphism.

4. Universal parametricity

Universal property for the interpretation of forall types.

Part I

System F and $\lambda 2$ -fibrations

Polymorphic functions

Polymorphic functions: depending on type variables $f: \forall X.T(X)$.

Examples:

the term

$$++$$
: $\forall X.X \rightarrow X \rightarrow X$

sum natural number, concatenation lists, ...

the term

$$rev: \forall X.list(X) \rightarrow list(X)$$

reverses lists.

Type context: $\Gamma = X_1, \dots, X_n$ list of type variables.

Type context: $\Gamma = X_1, \dots, X_n$ list of type variables.

Term context: $\Delta = t_1 : T_1, \dots, t_m : T_m$ list of term variables.

Type context: $\Gamma = X_1, \dots, X_n$ list of type variables.

Term context: $\Delta = t_1 : T_1, \dots, t_m : T_m$ list of term variables.

Type judgments:

$$\frac{X_i \in \Gamma}{\Gamma \vdash X_i \text{ type}}$$

$$\frac{\Gamma \vdash T \text{ type } \Gamma \vdash U \text{ type}}{\Gamma \vdash T \to U \text{ type}} \qquad \frac{\Gamma, X \vdash T \text{ type}}{\Gamma \vdash \forall X.T \text{ type}}$$

Type context: $\Gamma = X_1, \dots, X_n$ list of type variables.

Term context: $\Delta = t_1 : T_1, \dots, t_m : T_m$ list of term variables.

Type judgments:

$$\frac{X_i \in \Gamma}{\Gamma \vdash X_i \text{ type}}$$

$$\frac{\Gamma \vdash T \text{ type } \Gamma \vdash U \text{ type}}{\Gamma \vdash T \to U \text{ type}} \qquad \qquad \frac{\Gamma, X \vdash T \text{ type}}{\Gamma \vdash \forall X.T \text{ type}}$$

Context: Γ , Δ such that $\Gamma \vdash T_i$ type for every $i \in \{1, \ldots, m\}$.

Type context: $\Gamma = X_1, \dots, X_n$ list of type variables.

Term context: $\Delta = t_1 : T_1, \dots, t_m : T_m$ list of term variables.

Type judgments:

$$\frac{X_i \in \Gamma}{\Gamma \vdash X_i \text{ type}}$$

$$\frac{\Gamma \vdash T \text{ type } \Gamma \vdash U \text{ type}}{\Gamma \vdash T \to U \text{ type}} \qquad \qquad \frac{\Gamma, X \vdash T \text{ type}}{\Gamma \vdash \forall X.T \text{ type}}$$

Context: Γ , Δ such that $\Gamma \vdash T_i$ type for every $i \in \{1, ..., m\}$.

Term judgments for polymorphic functions:

$$\frac{\Gamma, X, \Delta \vdash t \colon T}{\Gamma, \Delta \vdash \Lambda X.t \colon \forall X.T} \qquad \frac{\Gamma, \Delta \vdash t \colon \forall X.T \quad \Gamma \vdash A \ \mathsf{type}}{\Gamma, \Delta \vdash t A \colon T[A]}$$

Type context: $\Gamma = X_1, \dots, X_n$ list of type variables.

Term context: $\Delta = t_1 : T_1, \dots, t_m : T_m$ list of term variables.

Type judgments:

$$rac{X_i \in \Gamma}{\Gamma \vdash X_i \text{ type}}$$

$$\frac{\Gamma \vdash T \text{ type } \Gamma \vdash U \text{ type}}{\Gamma \vdash T \to U \text{ type}} \qquad \qquad \frac{\Gamma, X \vdash T \text{ type}}{\Gamma \vdash \forall X.T \text{ type}}$$

Context: Γ , Δ such that $\Gamma \vdash T_i$ type for every $i \in \{1, ..., m\}$.

Term judgments for polymorphic functions:

$$\frac{\Gamma, X, \Delta \vdash t \colon T}{\Gamma, \Delta \vdash \Lambda X.t \colon \forall X.T} \qquad \frac{\Gamma, \Delta \vdash t \colon \forall X.T \quad \Gamma \vdash A \text{ type}}{\Gamma, \Delta \vdash tA \colon T[A]}$$

Categorical model: λ 2-fibrations

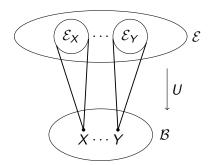
Fibres

Let $U \colon \mathcal{E} \to \mathcal{B}$ be a functor

Definition (fibre)

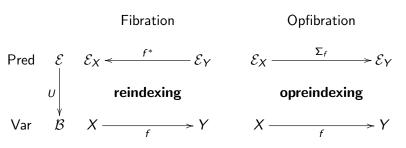
Given an object $X \in \mathcal{B}$, the **fibre** over X, denoted \mathcal{E}_X , is the subcategory of \mathcal{E} consisting of

- ▶ objects: $A \in \mathcal{E}$ such that U(A) = X;
- ▶ morphisms: $f: A \rightarrow B$ such that $U(f) = id_X$.



(Op)fibrations

Transport predicates along change of variables.



They satisfy a universal property.

$$\mathcal{E} = \mathsf{total} \; \mathsf{category}$$

$$\mathcal{B} = \mathsf{base} \; \mathsf{category}$$

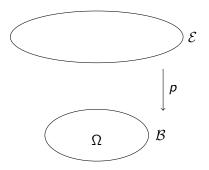
Fibration + opfibration = bifibration.

λ 2-fibration 1: type context

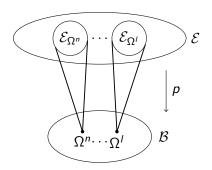
Fibration $p \colon \mathcal{E} \to \mathcal{B}$.

Generic object Ω : it represents type variables.

 \mathcal{B} has products: Ω^n is the interpretation of $\Gamma = X_1, \dots, X_n$.



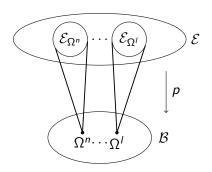
Let $\Gamma \vdash T$ type be a type judgment with $\Gamma = X_1, \dots, X_n$. We interpret a type T as an object $[\![T]\!]$ in the fibre \mathcal{E}_{Ω^n} .



ç

Let $\Gamma \vdash T$ type be a type judgment with $\Gamma = X_1, \dots, X_n$. We interpret a type T as an object $[\![T]\!]$ in the fibre \mathcal{E}_{Ω^n} .

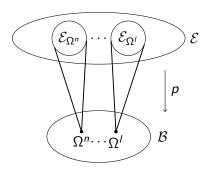
Fibres cartesian closed: products and functions spaces.



Let $\Gamma \vdash T$ type be a type judgment with $\Gamma = X_1, \dots, X_n$. We interpret a type T as an object $[\![T]\!]$ in the fibre \mathcal{E}_{Ω^n} .

Fibres cartesian closed: products and functions spaces.

Product: $\Delta = t_1 : T_1, \dots, t_m : T_m \text{ interpreted as } [T_1] \times \dots \times [T_m].$

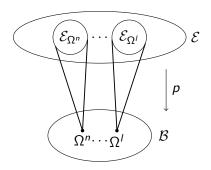


Let $\Gamma \vdash T$ type be a type judgment with $\Gamma = X_1, \dots, X_n$. We interpret a type T as an object $[\![T]\!]$ in the fibre \mathcal{E}_{Ω^n} .

Fibres cartesian closed: products and functions spaces.

Product: $\Delta = t_1 : T_1, \ldots, t_m : T_m \text{ interpreted as } [T_1] \times \ldots \times [T_m].$

Function space: $\Gamma, \Delta \vdash U \rightarrow V$ type interpreted as $\llbracket U \rrbracket \Rightarrow \llbracket V \rrbracket$.



ç

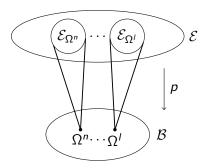
Let $\Gamma \vdash T$ type be a type judgment with $\Gamma = X_1, \dots, X_n$. We interpret a type T as an object $[\![T]\!]$ in the fibre \mathcal{E}_{Ω^n} .

Fibres cartesian closed: products and functions spaces.

Product: $\Delta = t_1 : T_1, \dots, t_m : T_m$ interpreted as $[T_1] \times \dots \times [T_m]$.

Function space: $\Gamma, \Delta \vdash U \rightarrow V$ type interpreted as $\llbracket U \rrbracket \Rightarrow \llbracket V \rrbracket$.

Terms are interpreted as morphisms in the fibres.



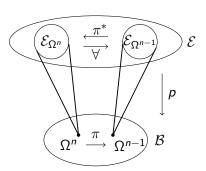
λ 2-fibration 3: forall types

We use the adjunction

$$\pi^* \dashv \forall$$

where \forall is right adjoint to the reindexing π^* along the projection

$$\pi\colon \Omega^n \to \Omega^{n-1}$$



We say that p has **simply products** (Beck-Chevaley condition).

Part II

Parametricity

and

Reynolds' relational interpretation

Parametricity

Ad hoc polymorphism

Defined in a different way depending on the type. Example:

$$++: \forall X.X \rightarrow X \rightarrow X$$

sum natural number \neq concatenation lists.

Parametric polymorphism

Defined in the same way for any type.

Example:

$$\mathsf{rev} \colon \forall X. \mathit{list}(X) \to \mathit{list}(X)$$

Usefulness of parametricity

Extract properties from types.

Example: every parametric function

$$h: \forall X.list(X) \rightarrow list(X)$$

satisfies

$$h(map f xs) = map f(h xs).$$

Thanks to Reynolds' relational interpretation.

Reynolds' relational model of System F

Relations

- ▶ Relations are subsets $R \subseteq A \times B$ (Rel).
- Equality $Eq : \mathsf{Set} \to \mathsf{Rel}$ plays special role.

Relational semantics for types

- $[T]_0$: $|\mathsf{Set}|^n \to \mathsf{Set}$
- $[T]_1$: $|Rel|^n o Rel$

Relational semantics for terms

- Natural transformation $[t]_0$ between functors $|\mathsf{Set}|^n \to \mathsf{Set}$
- ullet Natural transformation $[\![t]\!]_1$ between functors $|\mathsf{Rel}|^n o \mathsf{Rel}$

This model has sense only considering impredicativity in CoC, or in the (intuitionistic) internal language of a topos.

Reynolds' key theorems for parametricity

▶ Identity Extension Lemma (IEL)

Equality commutes with functorial interpretation of types.

► Abstraction Theorem (AT)

The interpretation $[t]_1$ arises from $[t]_0$.

Part III

Our work

joint work with

Patricia Johann, Neil Ghani,

Fredrik Nordvall-Forsberg and Tim Revell

Our work

Trying to capture parametricity axiomatically.

Use of bifibrational functorial semantics:

- It generalizes sets and relations over sets
- ▶ Enough to prove theorems axiomatically (initial algebras, ...)

Opens path to higher dimensional parametricity

Relations bifibrations

Definition (relations bifibration)

Given a bifibration $U: \mathcal{E} \to \mathcal{B}$

B has products

The **relations bifibration** of \mathcal{E} over \mathcal{B} is Rel(U)

$$Rel(\mathcal{E}) \xrightarrow{q} \mathcal{E}$$

$$Rel(U) \downarrow \qquad \qquad \downarrow U$$

$$\mathcal{B} \times \mathcal{B} \xrightarrow{\times} \mathcal{B}$$

arising via change of base (pullback).

When U has right adjoint, we can use opfibrational properties to define the equality functor $Eq: \mathcal{B} \to Rel(\mathcal{E})$.

Generalized setting for relations

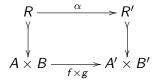
The category $Rel(\mathcal{E})$ has

- ▶ objects: triples (A, B, X) such that $U(X) = A \times B$
- ▶ morphisms: triples (f, g, h) such that $U(h) = f \times g$

We can think X as a relation over A and B.

Rel is the relations bifibration of sub: Sub(Set) \rightarrow Set:

- ▶ objects: $(A, B, R \subseteq A \times B)$
- morphisms: triples (f, g, α)



The framework

We want to define $\lambda 2$ -fibrations $p \colon \mathcal{E} \to \mathcal{B}$.

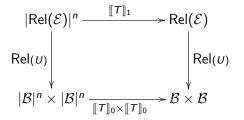
The category ${\cal B}$ has natural numbers as objects.

The generic object is 1.

The product is given by the sum of natural numbers.

System F types as lifted functors

The objects in the fibre \mathcal{E}_n are lifted functors



Given a System F type judgement

$$\Gamma \vdash T$$
 type

[T] is a lifted functor.

Identity Extension Lemma

Lemma (IEL, Reynolds-style)

If $\Gamma \vdash T$ type, then for every object \bar{A} in Set^n

$$[\![T]\!]_1(\operatorname{Eq}^n\bar{A})=\operatorname{Eq}\left([\![T]\!]_0\bar{A}\right)$$

Lemma (IEL, bifibrationally)

If $\Gamma \vdash T$ type, then $\llbracket T \rrbracket$ is equality preserving, i.e., the following diagram commutes:

$$|Rel(\mathcal{E})|^n \xrightarrow{\|\mathcal{T}\|_1} Rel(\mathcal{E})$$

$$|Eq|^n \qquad \qquad |Eq|^n$$

$$|\mathcal{B}|^n \xrightarrow{\|\mathcal{T}\|_0} \mathcal{B}$$

⇒ Equality preserving lifted functors

Terms are natural transformations

Term judgement

$$\Gamma$$
; $\Delta \vdash t$: T

For every object \bar{A} of $|\mathcal{B}|^n$ and \bar{R} in $|\mathrm{Rel}(\mathcal{E})|^n$ family of morphisms

$$[\![t]\!]_0\bar{A}\colon [\![\Delta]\!]_0\bar{A}\to [\![T]\!]_0\bar{A} \qquad \qquad [\![t]\!]_1\bar{R}\colon [\![\Delta]\!]_1\bar{R}\to [\![T]\!]_1\bar{R}$$

 $\llbracket \Delta \rrbracket$, $\llbracket T \rrbracket$ functors with discrete domain \Rightarrow natural transformations

$$|\mathcal{B}|^{n} \underbrace{ \begin{array}{c} \mathbb{Z}_{0} \\ \mathbb{Z}_{0} \end{array}}_{\mathbb{T}_{0}} \mathcal{B} \qquad |\mathrm{Rel}(\mathcal{E})|^{n} \underbrace{ \begin{array}{c} \mathbb{Z}_{1} \\ \mathbb{T}_{1} \end{array}}_{\mathbb{T}_{1}} \mathrm{Rel}(\mathcal{E})$$

Abstraction Theorem

Consider a judgement Γ ; $\Delta \vdash t : T$.

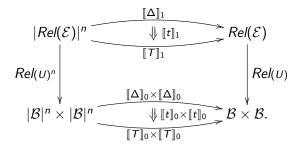
Theorem (Abstraction Theorem, Reynolds-Style)

Let $\bar{A}, \bar{B} \in Set^n$, $\bar{R} \in Rel^n(\bar{A}, \bar{B})$, if $(a, b) \in [\![\Delta]\!]_1 \bar{R}$ then

$$([\![t]\!]_0 \bar{A} a, [\![t]\!]_0 \bar{B} b) \in [\![T]\!]_1 \bar{R}$$

Theorem (Abstraction Theorem, bifibrationally)

 $\llbracket t
rbracket : \llbracket \Delta
rbracket o \llbracket T
rbracket$ defines a lifted natural transformation



Part IV

Universal parametricity

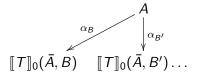
joint work with

Neil Ghani and Fredrik Nordvall-Forsberg

Polymorphic functions \Rightarrow types application

Polymorphic functions \Rightarrow types application

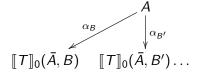
$$\alpha_B f = f B$$



Polymorphic functions \Rightarrow types application

$$\alpha_B f = f B$$

Parametric condition \Rightarrow application for $(f, f) \in Eq(A)$

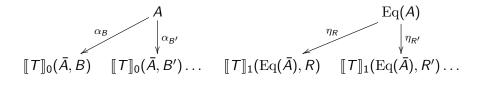


Polymorphic functions \Rightarrow types application

$$\alpha_B f = f B$$

Parametric condition \Rightarrow application for $(f, f) \in Eq(A)$

$$\eta_{R_{(A,B)}}(f,f) = (f A, f B)$$

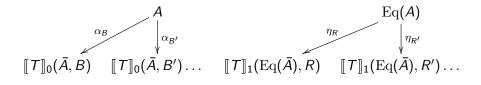


Polymorphic functions \Rightarrow types application

$$\alpha_B f = f B$$

Parametric condition \Rightarrow application for $(f, f) \in Eq(A)$

$$\eta_{R_{(A,B)}}(f,f) = (f A, f B)$$

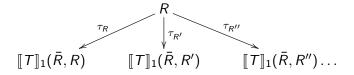


Lifted structure: η over (α, α) .

If it exists, the terminal cone is denoted $(\forall_0 \bar{A}, \alpha_{\bar{A}}, \eta_{\bar{A}})$.

Forall types in the total category

Types application au



should "live over" the cones like before

The terminal cone is denoted

$$((\forall_{0}\bar{A}, \alpha_{\bar{A}}, \eta_{\bar{A}}), (\forall_{0}\bar{B}, \beta_{\bar{B}}, \xi_{\bar{B}}), \forall_{1}\bar{R}, \tau_{\bar{R}}).$$

The functor $[\![\forall X.T]\!]$

Definition

If the terminal cones $(\forall_0 \bar{A}, \alpha_{\bar{A}}, \eta_{\bar{A}})$ and

$$((\forall_0 \bar{A}, \alpha_{\bar{A}}, \eta_{\bar{A}}), (\forall_0 \bar{B}, \beta_{\bar{B}}, \xi_{\bar{B}}), \forall_1 \bar{R}, \tau_{\bar{R}})$$

exist, we define

$$[\![\forall X.T]\!]_0\bar{A} := \forall_0\bar{A}$$

and

$$\llbracket \forall X.T \rrbracket_1 \bar{R} := \forall_1 \bar{R}.$$

Proposition

The functor $[\![\forall X.T]\!]$ gives an interpretation for the type judgment $\Gamma \vdash \forall X.T$ in accord with the definition via adjunction.

Related work

- Birkedal, Møgelberg "Categorical models of parametric polymorphism"
- Dunphy and Reddy "Parametric limits"
- Hermida, Reddy and Robinson "Logical relations and parametricity - A Reynolds programme for category theory and programming languages"
- Some unpublished work of Hermida
- Robinson, Rosolini "Reflexive graphs and parametric polymorphism"

Thank you!