Bifibrational Parametricity

Federico Orsanigo

The Mathematically Structured Programming Group
University of Strathclyde

&

LAMA
Université Savoie Mont Blanc

PLRR 2016
Marseille, 2 September 2016

Talk outline

1. Background
System F and A2-fibrations.

2. Parametricity
Parametricity and Reynolds’ relational interpretation.

3. Our model
Bifibrational functorial semantics of parametric polymorphism.

4. Universal parametricity
Universal property for the interpretation of forall types.

Part |

System F
and

A\2-fibrations

Polymorphic functions

Polymorphic functions: depending on type variables f: V.X.T(X).

Examples:

> the term
F+4+: VXX = X = X

sum natural number, concatenation lists, ...

> the term
rev: VX list(X) — list(X)

reverses lists.

System F

Type context: [= Xi,..., X, list of type variables.

System F

Type context: [= Xi,..., X, list of type variables.

Term context: A =ty: T1,...,tm: Ty list of term variables.

System F

Type context: [= Xi,..., X, list of type variables.

Term context: A =ty: T1,...,tm: Ty list of term variables.
Type judgments:
X,' el
I Xi type
=T type THU type X T type

N=T— U type M=VvX.T type

System F

Type context: [= Xi,..., X, list of type variables.

Term context: A =ty: T1,...,tm: Ty list of term variables.
Type judgments:
X,' el
I Xi type
=T type THU type X T type
N=T— U type M=VvX.T type

Context: I', A such that '+ T; type for every i € {1,..., m}.

System F

Type context: [= Xi,..., X, list of type variables.

Term context: A =ty: T1,...,tm: Ty list of term variables.
Type judgments:
X,' el
I Xi type
=T type THU type X T type
N=T— U type M=VvX.T type

Context: I', A such that '+ T; type for every i € {1,..., m}.

Term judgments for polymorphic functions:

X, At T ARt VYX.T TFA type
LAFAX.t: YX.T LAFtA: T[A]

System F

Type context: [= Xi,..., X, list of type variables.

Term context: A =ty: T1,...,tm: Ty list of term variables.
Type judgments:
X,' el
I Xi type
=T type THU type X T type
N=T— U type M=VvX.T type

Context: I', A such that '+ T; type for every i € {1,..., m}.

Term judgments for polymorphic functions:

X, At T ARt VYX.T TFA type
LAFAX.t: YX.T LAFtA: T[A]

Categorical model: A\2-fibrations

Fibres
Let U: & — B be a functor
Definition (fibre)
Given an object X € B, the fibre over X, denoted Ex, is the
subcategory of £ consisting of
» objects: A € € such that U(A) = X;

» morphisms: f: A — B such that U(f) = idx.

(Op)fibrations

Transport predicates along change of variables.

Fibration Opfibration
Pred £ Ex~—1——& & = Ey
U reindexing opreindexing
Var B X Y X Y

They satisfy a universal property.
& = total category
B = base category

Fibration + opfibration = bifibration.

A2-fibration 1: type context

Fibration p: £ — B.

Generic object Q: it represents type variables.

B has products: Q" is the interpretation of I = X1, ...

o]

A2-fibration 2: types and terms
Let I+ T type be a type judgment with I = Xg,..., X,.
We interpret a type T as an object [T] in the fibre Eqgn.

A2-fibration 2: types and terms
Let I+ T type be a type judgment with I = Xg,..., X,.
We interpret a type T as an object [T] in the fibre Eqgn.

Fibres cartesian closed: products and functions spaces.

A2-fibration 2: types and terms
Let I+ T type be a type judgment with I = Xg,..., X,.
We interpret a type T as an object [T] in the fibre Eqgn.

Fibres cartesian closed: products and functions spaces.

Product: A =ty: Tq,...,tm: Tp interpreted as [T1] X ... X [Th]-

A2-fibration 2: types and terms
Let I+ T type be a type judgment with I = Xg,..., X,.
We interpret a type T as an object [T] in the fibre Eqgn.

Fibres cartesian closed: products and functions spaces.

Product: A =ty: Tq,...,tm: Tp interpreted as [T1] X ... X [Th]-
Function space: ', A+ U — V type interpreted as [U] = [V].

A2-fibration 2: types and terms
Let I+ T type be a type judgment with I = Xg,..., X,.
We interpret a type T as an object [T] in the fibre Eqgn.

Fibres cartesian closed: products and functions spaces.

Product: A =ty: Tq,...,tm: Tp interpreted as [T1] X ... X [Th]-
Function space: ', A+ U — V type interpreted as [U] = [V].

Terms are interpreted as morphisms in the fibres.

A2-fibration 3: forall types

We use the adjunction
4V

where V is right adjoint to the reindexing 7* along the projection
g g)

T Qs Qnl

We say that p has simply products (Beck-Chevaley condition).

10

Part I

Parametricity
and

Reynolds’ relational interpretation

11

Parametricity

» Ad hoc polymorphism
Defined in a different way depending on the type.
Example:
++: VXX =2 X =X

sum natural number # concatenation lists.

» Parametric polymorphism
Defined in the same way for any type.
Example:
rev: VX.list(X) — list(X)

12

Usefulness of parametricity

» Extract properties from types.

Example: every parametric function
h: VX.list(X) — list(X)

satisfies

h(map f xs) = map f (hxs).

Thanks to Reynolds' relational interpretation.

13

Reynolds’ relational model of System F

» Relations

» Relations are subsets R C A x B (Rel).
» Equality Eq: Set — Rel plays special role.

» Relational semantics for types
e [T]o: |Set|” — Set
e [T]1: |Rel|” — Rel

» Relational semantics for terms

e Natural transformation [t]o between functors |Set|” — Set
e Natural transformation [[t]; between functors |Rel|” — Rel

This model has sense only considering impredicativity in CoC,
or in the (intuitionistic) internal language of a topos.

14

Reynolds' key theorems for parametricity

» Identity Extension Lemma (IEL)

Equality commutes with functorial interpretation of types.

» Abstraction Theorem (AT)

The interpretation [t]; arises from [t]o.

15

Part 1]

Our work

joint work with
Patricia Johann, Neil Ghani,

Fredrik Nordvall-Forsberg and Tim Revell

16

Our work

Trying to capture parametricity axiomatically.

Use of bifibrational functorial semantics:

> It generalizes sets and relations over sets

» Enough to prove theorems axiomatically (initial algebras, ...

Opens path to higher dimensional parametricity

17

Relations bifibrations

Definition (relations bifibration)
Given a bifibration U : € — B

B has products
The relations bifibration of £ over B is Rel(U)

arising via change of base (pullback).

When U has right adjoint, we can use opfibrational properties to
define the equality functor Eq: B — Rel(€).

18

Generalized setting for relations

The category Rel(€) has
» objects: triples (A, B, X) such that U(X) =AXx B
» morphisms: triples (f, g, h) such that U(h) =f x g

We can think X as a relation over A and B.

Rel is the relations bifibration of sub: Sub(Set) — Set:
» objects: (A,B,R C Ax B)

» morphisms: triples (f, g, a)

R—M¢% R

|

AxB—A x B
fxg

19

The framework

We want to define A2-fibrations p: & — B.
The category B has natural numbers as objects.

The generic object is 1.

The product is given by the sum of natural numbers.

20

System F types as lifted functors

The objects in the fibre &, are lifted functors

[Tl

IRel(E)[” Rel(€)

Rel(v) Rel(v)

Given a System F type judgement
=T type

[T] is a lifted functor.

21

|dentity Extension Lemma

Lemma (IEL, Reynolds-style)
IfT = T type, then for every object A in Set”

[T11(Eq" A) = Eq([T]oA)

Lemma (IEL, bifibrationally)

IfT = T type, then [T] is equality preserving, i.e., the following
diagram commutes:

IRel(€)|" 112 Rel()

wl

n —_—
1Bl [TTo b

= Equality preserving lifted functors

22

Terms are natural transformations

Term judgement
ARt T

For every object A of |B|" and R in [Rel(E)|" family of morphisms

[[t]]o/_\i [[A]]()A — [[Tﬂoxa [[t]hRZ [[A]];[R) — [[T]]lé

[A], [T] functors with discrete domain = natural transformations

[Alo [Als
B W SB [Rel@) LIk Rel(©)

[TTo [Tl

23

Abstraction Theorem
Consider a judgement I A ¢t: T.

Theorem (Abstraction Theorem, Reynolds-Style)
Let A, B € Set", R € Rel"(A, B), if (a, b) € [A]1R then

([tlo Aa,tlo B b) € [ThR

Theorem (Abstraction Theorem, bifibrationally)
[t] : [A] — [T] defines a lifted natural transformation

[Al:
mﬂaw::::EEE::jRﬂa
[Tl
Rel(u)" Rel(v)
[Alox[A]o

/—\
|B|" x [B|" [eloxItle . B x B.
_ VIEexo
[TIoxITTo

24

Part |V

Universal parametricity

joint work with

Neil Ghani and Fredrik Nordvall-Forsberg

25

Forall types in the base category

Polymorphic functions = types application

26

Forall types in the base category
Polymorphic functions = types application

agf =fB

A
e e
B/

[Tlo(A,B) [Tlo(A,B)...

26

Forall types in the base category
Polymorphic functions = types application
agf =fB

Parametric condition = application for (f,f) € Eq(A)

A
e e
B/

[Tlo(A,B) [Tlo(A,B)...

26

Forall types in the base category
Polymorphic functions = types application
apf =fB
Parametric condition = application for (f,f) € Eq(A)

Ry (F2) = (F A F B)

Eq(A)

o B

[TIo(A,B) [TIo(A,B')... [TIi(Ea(A),R) [T]i(Eq(A),R)...

26

Forall types in the base category
Polymorphic functions = types application
apf =fB
Parametric condition = application for (f,f) € Eq(A)

Ry (F2) = (F A F B)

/j Eq(A)
[TIo(A, B) [Tlo(A B')... [Tli(Eq(A),R) [Tli(Eq(A),R')...

Lifted structure: n over (a,).

If it exists, the terminal cone is denoted (VoA, az,1z)-

26

Forall types in the total category
Types application 7

=]
[T1:(R,R) [T](R,R') [T]u(R,R")...

should “live over”the cones like before
A B
/ lac/ % lﬁa
[TIo(A, C) [Tlo(A C)... [Tlo(B,C) [Tlo(B,C)...

The terminal cone is denoted

((VO’Z\v az, 77,5)7 (voéa /Béa éé)?vlé7 TR)

27

The functor [VX.T]

Definition)
If the terminal cones (VoA, az,75) and

((YoA, iz, mz), (VoB, Bs, €5), V1R, T5)
exist, we define B B
HVX. T]]()A = V()A

and B B
[VX.T]1R =VY1R.

Proposition
The functor [VX.T] gives an interpretation for the type judgment
I+ VX.T in accord with the definition via adjunction.

28

Related work

» Birkedal, Mggelberg “Categorical models of parametric
polymorphism”

» Dunphy and Reddy “Parametric limits”

» Hermida, Reddy and Robinson “Logical relations and
parametricity - A Reynolds programme for category theory and
programming languages”

» Some unpublished work of Hermida

» Robinson, Rosolini “Reflexive graphs and parametric
polymorphism ”

29

Thank you!

