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The Parsimonious Trinity

multiplicative affine logic +

Γ ` A
!Γ ` !A

Γ, A, !A ` C
Γ, !A ` C

Γ ` A ∆ ` !A
Γ,∆ ` !A

SMCC with terminal unit
+ monoidal endofunctor !(−)
+ natural iso !A ∼= A⊗ !A

Affine calculus with streams
t, u ::= a | λa.t | tu | t⊗ u | t[a⊗ b := u]

| xi | !t | t :: u | t[!x := u]



The infinitary affine λ-calculus

• Linear logic (or its affine variant) has two layers:

multiplicative: SMCC + terminal unit; affine λ-terms;
exponential: allows to recover intuitionistic logic/λ-calculus.

• Idea: the exponential modality is a limit [Mélliès et al.], [EhrhardRegnier].

• Infinitary affine terms: t, u ::= xi | λx.t | t〈u0, u1, u2, . . .〉

1. finite terms are dense: t = supbtcn, with btcn the “truncation” of t;
2. reduction is continuous.

• The usual λ-calculus embeds via Girard’s translation

JMNK := JMK0〈JNK1, JNK2, JNK3, . . .〉



Church Meets Cook and Levin

• Cook-Levin theorem: “computation is local”.

• Idea: local = continuous:

Mx→l(|x|) b =⇒ ∃m(l). bJMKcm(l) x→∗ b

• In Turing machines, m = O(l2). In the λ-calculus, m = O(2l)!

• This is related to size explosion: M →Θ(n) Nn with |Nn| = Θ(2n|M |).



Enter parsimony

• Parsimonious logic has an alternative exponential layer:

A,B ::= X | 1 | A ⊗ B | A( B | !A Milner’s law: !A ∼= A⊗ !A

Γ ` A
!Γ ` !A

!
Γ, A, !A ` C

Γ, !A ` C abs
Γ ` A ∆ ` !A

Γ,∆ ` !A
coabs

• The parsimonious λ-calculus:

M,N ::= a | λa.M |MN |M ⊗N |M [a⊗ b := N ] (multiplicative)

| xi | !M |M :: N |M [!x := N ] + constraints (exponential)

• Affine access to finite initial segments of ultimately constant streams.



What parsimony can and cannot do

• Some examples/non examples:

– λa.(x0 ⊗ !x1)[!x := a] : !A( A⊗ !A (Milner’s law)
– λp.(a :: b)[a⊗ b := p] : A⊗ !A( !A (Milner’s law−1)
– λa.〈x0, x2, . . .〉 ⊗ 〈x1, x3, . . .〉[!x := a] : !A( !A⊗ !A (contraction)
– λa.〈x1, x3, x5, . . .〉[!x := a] : !A( !A
– ∆ := λa.(x0!x1)[!x := a] ∆!∆→∗ ∆!∆
– No general fixpoint combinator. Only linear fixpoints.

• The untyped parsimonious λ-calculus is Turing-complete.

• It fixes the Church/Cook-Levin disagreement; no size explosion.

• For complexity reasons (cf. a few slides below), a translation like Girard’s
LJ→ LL cannot exist for parsimonious logic.



Parsimonious programming

• Parsimonious PCF allows only linear fixpoints:

Y : !(!A( A)( A vs. Y` : !(A( A)( A

• In parsimonious Ocaml: let rec f x = Φ (f appears once in Φ).

• Quite annoying if you want to recurse on trees. . .

• Question: is there a compilation PCF → parsimonious PCF?

• Possible answer: Yf : A→ B 7→ Y`f
′ : A⊗B⊗Bool⊗SA,B ( B such

that (Yf ′)(a,−, ↑, ε) = (Yf)(a).



Example: the Fibonacci numbers

fib_aux(n,m,d,s) :=

if (d = - and isEmpty(s)) then m

else let (n’,m’,d’,s’) =

if (d = +) then

if (n=0 or n=1) then (?,1,-,s)

else (n-1,?,+,(n,*)::s)

else

let (a,b)::r = s in

if (b=*) then (a-2,?,+,(a,m)::r)

else (?,m+b,-,r)

in fib_aux(n’,m’,d’,s’)

fib(n) := fib_aux(n,?,+,.)

• Is parsimonious logic the “logic of while loops”?



Implicit computational complexity

• What languages may be decided in parsimonious Str( Bool?

types predicates in the λ-calculus
untyped RE RE
polymorphic Conjecture: PR? PA2

linear polymorphic P ??
simple L ( LINTIME

• Quite different from usual linear logic ICC (“light logics”):
global (light logics) vs. local (parsimony) complexity of cut-elimination.

• Novel perspective: non-uniform computation (P/poly, L/poly).



Intersection types and approximations

intersection type derivation = simply-typed approximation

A,B ::= α | A⊗B | A( B | 〈A0, . . . , An−1〉
t, u ::= (mult) | xi | !⊥ | t :: u | t[!x := u]

M,N ::= (mult) | xi | !M |M :: N |M [!x := N ]

Γ, x : A; ∆ ` xi @ xi : A(i)
fv(M) ⊆ x

x : Γ;` !⊥ @ !M : 〈〉

Γ; ∆ ` t @M : A Γ; ∆′ ` u @ !M++ : B
Γ; ∆,∆′ ` t :: u @ !M : A :: B

Γ; ∆′ ` u @ N : A Γ, x : A; ∆ ` t @M : C
Γ; ∆,∆′ ` t[!x := u] @M [!x := N ] : C



Excursus: approximations and resource λ-terms

• Consider the subcalculus of approximations

t, u ::= xi | λx.t | t〈u1, . . . , un〉

• Erase indices and ordering in sequences:

t, u ::= x | λx.t | t[u1, . . . , un]

• Looks familiar?

affine approximations ⇔ resource λ-terms
rigid intersection types ⇔ non-idempotent intersection types

t @M ⇔ t− ∈ Taylor(M)



Time is Size, Space is Depth

Theorem. Let
` tn @M : Strn( Bool

where Strn are “n-linearizations” of (!(α( α))⊗2 ( α( α, of
depth d(n). Then,

lang(M) ∈ TIME(O(|tn|)) ∩ SPACE(O(d(n) log |tn|)).

Proof. For time, use rewriting; for space, use the GoI. �

• HO circuit = t : Str[]( Bool, size = |t|, depth = depth(Str[]).

• Consistent with Terui, 2004; similar to Borodin 1977:

DEPTH/SIZE(d, s) ⊆ TIME(O(s)) ∩ SPACE(O(d+ log s))



Questions and perspectives

• Is parsimonious system F exactly primitive recursive?

• Is the compilation PCF → parsimonious PCF canonical?

• Denotational semantics: a concrete strict model?

• Small circuit classes? (Or: dropping higher order)

• A more abstract view of the Cook-Levin theorem?


