
Parsimonious Logic
and Computational Complexity

Damiano Mazza
CNRS, UMR 7030, Laboratoire d’Informatique de Paris Nord

Université Paris 13, Sorbonne Paris Cité

Quantitative Semantics for Logic and Computation
Marseille, 2–3 September 2016

The Parsimonious Trinity

multiplicative affine logic +

Γ ` A
!Γ ` !A

Γ, A, !A ` C
Γ, !A ` C

Γ ` A ∆ ` !A
Γ,∆ ` !A

SMCC with terminal unit
+ monoidal endofunctor !(−)
+ natural iso !A ∼= A⊗ !A

Affine calculus with streams
t, u ::= a | λa.t | tu | t⊗ u | t[a⊗ b := u]

| xi | !t | t :: u | t[!x := u]

The infinitary affine λ-calculus

• Linear logic (or its affine variant) has two layers:

multiplicative: SMCC + terminal unit; affine λ-terms;
exponential: allows to recover intuitionistic logic/λ-calculus.

• Idea: the exponential modality is a limit [Mélliès et al.], [EhrhardRegnier].

• Infinitary affine terms: t, u ::= xi | λx.t | t〈u0, u1, u2, . . .〉

1. finite terms are dense: t = supbtcn, with btcn the “truncation” of t;
2. reduction is continuous.

• The usual λ-calculus embeds via Girard’s translation

JMNK := JMK0〈JNK1, JNK2, JNK3, . . .〉

Church Meets Cook and Levin

• Cook-Levin theorem: “computation is local”.

• Idea: local = continuous:

Mx→l(|x|) b =⇒ ∃m(l). bJMKcm(l) x→∗ b

• In Turing machines, m = O(l2). In the λ-calculus, m = O(2l)!

• This is related to size explosion: M →Θ(n) Nn with |Nn| = Θ(2n|M |).

Enter parsimony

• Parsimonious logic has an alternative exponential layer:

A,B ::= X | 1 | A ⊗ B | A(B | !A Milner’s law: !A ∼= A⊗ !A

Γ ` A
!Γ ` !A

!
Γ, A, !A ` C

Γ, !A ` C abs
Γ ` A ∆ ` !A

Γ,∆ ` !A
coabs

• The parsimonious λ-calculus:

M,N ::= a | λa.M |MN |M ⊗N |M [a⊗ b := N] (multiplicative)

| xi | !M |M :: N |M [!x := N] + constraints (exponential)

• Affine access to finite initial segments of ultimately constant streams.

What parsimony can and cannot do

• Some examples/non examples:

– λa.(x0 ⊗ !x1)[!x := a] : !A(A⊗ !A (Milner’s law)
– λp.(a :: b)[a⊗ b := p] : A⊗ !A(!A (Milner’s law−1)
– λa.〈x0, x2, . . .〉 ⊗ 〈x1, x3, . . .〉[!x := a] : !A(!A⊗ !A (contraction)
– λa.〈x1, x3, x5, . . .〉[!x := a] : !A(!A
– ∆ := λa.(x0!x1)[!x := a] ∆!∆→∗ ∆!∆
– No general fixpoint combinator. Only linear fixpoints.

• The untyped parsimonious λ-calculus is Turing-complete.

• It fixes the Church/Cook-Levin disagreement; no size explosion.

• For complexity reasons (cf. a few slides below), a translation like Girard’s
LJ→ LL cannot exist for parsimonious logic.

Parsimonious programming

• Parsimonious PCF allows only linear fixpoints:

Y : !(!A(A)(A vs. Y` : !(A(A)(A

• In parsimonious Ocaml: let rec f x = Φ (f appears once in Φ).

• Quite annoying if you want to recurse on trees. . .

• Question: is there a compilation PCF → parsimonious PCF?

• Possible answer: Yf : A→ B 7→ Y`f
′ : A⊗B⊗Bool⊗SA,B (B such

that (Yf ′)(a,−, ↑, ε) = (Yf)(a).

Example: the Fibonacci numbers

fib_aux(n,m,d,s) :=

if (d = - and isEmpty(s)) then m

else let (n’,m’,d’,s’) =

if (d = +) then

if (n=0 or n=1) then (?,1,-,s)

else (n-1,?,+,(n,*)::s)

else

let (a,b)::r = s in

if (b=*) then (a-2,?,+,(a,m)::r)

else (?,m+b,-,r)

in fib_aux(n’,m’,d’,s’)

fib(n) := fib_aux(n,?,+,.)

• Is parsimonious logic the “logic of while loops”?

Implicit computational complexity

• What languages may be decided in parsimonious Str(Bool?

types predicates in the λ-calculus
untyped RE RE
polymorphic Conjecture: PR? PA2

linear polymorphic P ??
simple L (LINTIME

• Quite different from usual linear logic ICC (“light logics”):
global (light logics) vs. local (parsimony) complexity of cut-elimination.

• Novel perspective: non-uniform computation (P/poly, L/poly).

Intersection types and approximations

intersection type derivation = simply-typed approximation

A,B ::= α | A⊗B | A(B | 〈A0, . . . , An−1〉
t, u ::= (mult) | xi | !⊥ | t :: u | t[!x := u]

M,N ::= (mult) | xi | !M |M :: N |M [!x := N]

Γ, x : A; ∆ ` xi @ xi : A(i)
fv(M) ⊆ x

x : Γ;` !⊥ @ !M : 〈〉

Γ; ∆ ` t @M : A Γ; ∆′ ` u @ !M++ : B
Γ; ∆,∆′ ` t :: u @ !M : A :: B

Γ; ∆′ ` u @ N : A Γ, x : A; ∆ ` t @M : C
Γ; ∆,∆′ ` t[!x := u] @M [!x := N] : C

Excursus: approximations and resource λ-terms

• Consider the subcalculus of approximations

t, u ::= xi | λx.t | t〈u1, . . . , un〉

• Erase indices and ordering in sequences:

t, u ::= x | λx.t | t[u1, . . . , un]

• Looks familiar?

affine approximations ⇔ resource λ-terms
rigid intersection types ⇔ non-idempotent intersection types

t @M ⇔ t− ∈ Taylor(M)

Time is Size, Space is Depth

Theorem. Let
` tn @M : Strn(Bool

where Strn are “n-linearizations” of (!(α(α))⊗2 (α(α, of
depth d(n). Then,

lang(M) ∈ TIME(O(|tn|)) ∩ SPACE(O(d(n) log |tn|)).

Proof. For time, use rewriting; for space, use the GoI. �

• HO circuit = t : Str[](Bool, size = |t|, depth = depth(Str[]).

• Consistent with Terui, 2004; similar to Borodin 1977:

DEPTH/SIZE(d, s) ⊆ TIME(O(s)) ∩ SPACE(O(d+ log s))

Questions and perspectives

• Is parsimonious system F exactly primitive recursive?

• Is the compilation PCF → parsimonious PCF canonical?

• Denotational semantics: a concrete strict model?

• Small circuit classes? (Or: dropping higher order)

• A more abstract view of the Cook-Levin theorem?

