QSLC workshop, Marseille 2016

Mackey-complete spaces and power series : A topological model of Differential Linear Logic

Marie Kerjean joint work with Christine Tasson

IRIF Université Paris Diderot

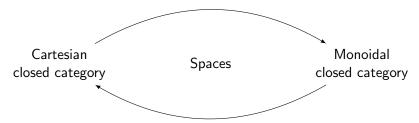
September 3, 2016

Slogan

We want a smooth and quantitative model of Intuitionistic Differential Linear Logic.

Models of Differential Linear Logic

Those are models of Linear Logic ...



... with a biproduct structure, and a codereliction operator :

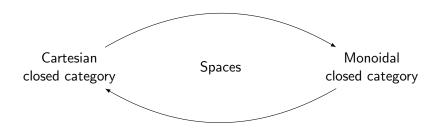
$$\bar{d}:A\rightarrow !A$$

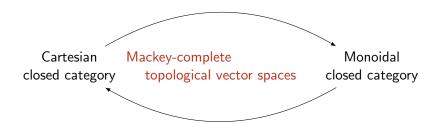
and some coherence conditions...

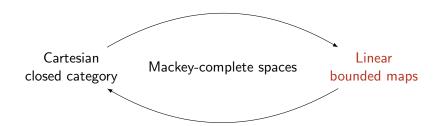
Ehrhard, A semantical introduction to differential linear logic. 2011

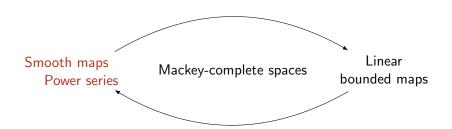
Fiore, Differential structure in models of multiplicative biadditive intuitionistic

linear logic. TLCA 2007









Smoothness

- ► The first models of Differential Linear Logic were discrete, operations being quantified on bases of vector spaces (Köthe spaces, Finiteness spaces).
- However, differentiation is historically of a continuous nature.
 We want to be able to match this intuition in a model of Differential Linear Logic.

Kriegl and Michor, The convenient setting of global analysis, 1997

Blute, Ehrhard and Tasson, A convenient differential category, 2010

We want a cartesian closed category of differentiable function.

$$\mathcal{D}(E \times F, G) \neq \mathcal{D}(E, \mathcal{D}(F, G))$$

$$\mathcal{C}^{\infty}(E \times F, G) \neq \mathcal{C}^{\infty}(E, \mathcal{C}^{\infty}(F, G))$$

We want a cartesian closed category of differentiable function.

$$\mathcal{D}(E \times F, G) \neq \mathcal{D}(E, \mathcal{D}(F, G))$$

$$\mathcal{C}^{\infty}(E\times F,G)\neq\mathcal{C}^{\infty}(E,\mathcal{C}^{\infty}(F,G))$$

We need a good definition of smoothness

We want a cartesian closed category of differentiable function.

$$\mathcal{D}(E\times F,G)\neq \mathcal{D}(E,\mathcal{D}(F,G)$$

$$\mathcal{C}^{\infty}(E\times F,G)\neq\mathcal{C}^{\infty}(E,\mathcal{C}^{\infty}(F,G))$$

We need a good definition of smoothness

We also need tools to handle power series.

$$f = \sum_{\substack{n \text{converging}}} f_n$$

We want a cartesian closed category of differentiable function.

$$\mathcal{D}(E \times F, G) \neq \mathcal{D}(E, \mathcal{D}(F, G))$$

$$\mathcal{C}^{\infty}(E\times F,G)\neq\mathcal{C}^{\infty}(E,\mathcal{C}^{\infty}(F,G))$$

We need a good definition of smoothness

We also need tools to handle power series.

$$f = \sum_{\substack{n \text{converging}}} f_n$$

We need some notion of completeness as a way to obtain convergence

A space of (non necessarily linear) functions between to finite dimensional spaces is not finite dimensional.

$$\dim \, \mathcal{C}^0(\mathbb{C}^n,\mathbb{C}^m)=\infty.$$

A space of (non necessarily linear) functions between to finite dimensional spaces is not finite dimensional.

$$\dim \, \mathcal{C}^0(\mathbb{C}^n,\mathbb{C}^m)=\infty.$$

We can't restrict ourselves to finite dimensional spaces.

A space of (non necessarily linear) functions between to finite dimensional spaces is not finite dimensional.

$$\dim \, \mathcal{C}^0(\mathbb{C}^n,\mathbb{C}^m)=\infty.$$

We can't restrict ourselves to finite dimensional spaces.

If we try to norm the spaces of (non necessarily linear) functions, then we have a problem.

- We want to use power series or analytic functions.
- For polarity reasons, we want the supremum norm on spaces of power series.
- But a power series can't be bounded on an unbounded space (Liouville's Theorem).
- Thus functions must depart from an open ball, but arrive in a closed ball. Thus they do not compose.
- This is why Coherent Banach spaces don't work.

A space of (non necessarily linear) functions between to finite dimensional spaces is not finite dimensional.

$$\dim \, \mathcal{C}^0(\mathbb{C}^n,\mathbb{C}^m)=\infty.$$

We can't restrict ourselves to finite dimensional spaces.

If we try to norm the spaces of (non necessarily linear) functions, then we have a problem.

- We want to use power series or analytic functions.
- For polarity reasons, we want the supremum norm on spaces of power series.
- But a power series can't be bounded on an unbounded space (Liouville's Theorem).
- Thus functions must depart from an open ball, but arrive in a closed ball. Thus they do not compose.
- This is why Coherent Banach spaces don't work.

We can't restrict ourselves to normed spaces.

Bounded sets and linear maps

Topological vector spaces

We work with Haussdorf complex topological vector spaces : complex vector spaces endowed with a Haussdorf topology making addition and scalar multiplication continuous.

A bounded set B is a set such that for every open set U containing 0, there is a scalar r such that $B \subseteq rU$.

A function is a bounded function if it maps bounded sets on bounded sets.

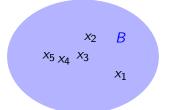
A complete locally-convex topological vector space is a locally-convex topological vector space in which every Cauchy net converges

A Mackey-complete locally-convex topological vector space is a locally-convex topological vector space in which every Mackey-Cauchy sequence converges

A Mackey-complete locally-convex topological vector space is a locally-convex topological vector space in which every Mackey-Cauchy sequence converges

A Mackey-Cauchy net in E is a net $(x_{\gamma})_{\gamma \in \Gamma}$ such that there is a net of scalars $\lambda_{\gamma,\gamma'}$ decreasing towards 0 and a bounded set B of E such that:

$$\forall \gamma, \gamma' \in \Gamma, x_{\gamma} - x_{\gamma'} \in \lambda_{\gamma, \gamma'} B.$$



A Mackey-complete locally-convex topological vector space is a locally-convex topological vector space in which every Mackey-Cauchy sequence converges

A Mackey-Cauchy net in E is a net $(x_\gamma)_{\gamma\in\Gamma}$ such that there is a net of scalars $\lambda_{\gamma,\gamma'}$ decreasing towards 0 and a bounded set B of E such that:

$$\forall \gamma, \gamma' \in \Gamma, x_{\gamma} - x_{\gamma'} \in \lambda_{\gamma, \gamma'} B.$$

Mackey-completeness is a very weak condition and works well with bounded sets.

A monoidal closed category

- ▶ Endow $E \otimes F$ with the Mackey-completion of the finest locally convex topology such that $E \times F \rightarrow E \otimes F$ is bounded.
- ▶ Endow the space $\mathcal{L}(E, F)$ of all linear bounded function between E and F with the topology of uniform convergence on bounded subsets of E.

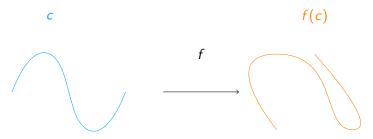
One get a symmetric monoidal closed category of Mackey-complete complex tvs and linear bounded maps between them.

$$\mathcal{L}(E \hat{\otimes} F, G) \simeq \mathcal{L}(E, \mathcal{L}(F, G))$$

Smooth functions

Smooth maps à la Frölicher, Kriegl and Michor

A smooth curve $c : \mathbb{R} \to E$ is a curve infinitely many times differentiable.

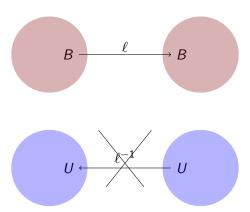


A smooth function $f: E \to F$ is a function sending a smooth curve on a smooth curve.

In Banach spaces, the definition coincides with the usual one (all iterated derivatives exists and are continuous).

Bounded sets and smooth functions

Linear continuous functions are bounded, but a linear bounded function may not be continuous.



However, linear bounded functions are smooth.

Smooth functions and differentials

A smooth map is Gateau-differentiable. Let us write $C^{\infty}(E, F)$ for the space of all smooth maps between E and F.

Theorem

The differentiation operator

$$\bar{d}: \left\{ \begin{aligned} \mathcal{C}^{\infty}(E,F) &\to \mathcal{C}^{\infty}(E,\mathcal{L}(E,F)) \\ f &\mapsto \left(x \mapsto \left(y \mapsto \lim_{t \to 0} \frac{f(x+ty) - f(x)}{t} \right) \right) \end{aligned} \right.$$

is well-defined, linear and bounded.

Power series

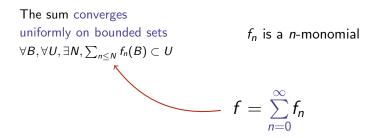
$$f = \sum_{n=0}^{\infty} f_n$$

$$f(x) = \lim_{N \to \infty} \sum_{n=0}^{N} f_n(x)$$

The sum converges uniformly on bounded sets

 f_n is a n-monomial: there is a bounded n-linear function \tilde{f}_n such that $f_n(x) = \tilde{f}_n(x,...,x)$

$$f = \sum_{n=0}^{\infty} f_n$$



The sum converges uniformly on bounded sets

 f_n is a n-monomial

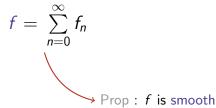


Prop : f is bounded

The sum converges uniformly on bounded sets

 f_n is a n-monomial

Prop : *f* is bounded



The sum converges uniformly on bounded sets

 f_n is a n-monomial

$$f=\sum_{n=0}^{\infty}f_n$$
 Prop : f is bounded Prop : f is smooth Cauchy inequality : if $f(b)\subset b'$, then $\forall n,f_n(b)\subset b'$

Back to the scalars

Mackey-Arens theorem

A subset $B \subset E$ is bounded iff for every $\ell \in E'$, I(b) is bounded in \mathbb{C} .

Scalar testing

Let $f: E \to F$ be a bounded function and let f_k be k-monomials such that for every $\ell \in F'$, $\sum_k \ell \circ f_k$ converges towards $\ell \circ f$ uniformly on bounded sets of E. Then, $f = \sum_k f_k$ is also a power series.

A cartesian closed category

Theorem: A category ...

The composition of a power series is a power series.

Let us write S(E,F) for the space of powers series between E and F, endowed with the topology of uniform convergence on bounded subsets of E.

Theorem

If E, F, and G are Mackey-complete spaces, then

$$S(E \times F, G) \simeq S(E, S(F, G)).$$

Cartesian closedness

proof

Going back to the scalar case and to Fubini's theorem : we can permute absolutely converging double series in \mathbb{C} .

$$\psi: \left\{ S(E,S(F,G)) \to S(E \times F,G) \atop \sum_{n} (f_n: x \mapsto \sum_{m} f_{n,m}^x) \mapsto \left((x,y) \mapsto \sum_{k} \sum_{n+m=k} f_{n,m}^x(y) \right) \right.$$

What if ...

... we wanted a smooth and quantitative model of Intuitionistic Differential Linear Logic.

What if ...

- ... we wanted a smooth and quantitative model of Intuitionistic Differential Linear Logic.
- The category of Mackey-complete reflexive spaces and linear bounded map is not closed.
- We can cheat by the using pairs (as in Coherent Banach spaces) or by endowing the spaces with their weak topology.

Conclusion

- Mackey-completeness is a minimal and very weak condition for power series to converge.
- ► The use of bounded sets and Mackey-convergence within these sets is crucial.
- ► The quantitative setting allows for cartesian closedness.
- ► The topologies are simpler than in the model of intuitionistic Differential Linear Logic with smooth maps (Blute, Ehrhard and Tasson 2010).

Thank you!

