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Slogan

We want a smooth and quantitative model
of Intuitionistic Differential Linear Logic.
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Models of Differential Linear Logic
Those are models of Linear Logic ...

Spaces
Monoidal

closed category
Cartesian

closed category

... with a biproduct structure, and a codereliction operator :

d̄ : A→!A

and some coherence conditions...

Ehrhard, A semantical introduction to differential linear logic. 2011

Fiore, Differential structure in models of multiplicative biadditive intuitionistic

linear logic. TLCA 2007

3/25



Plan

Spaces
Monoidal

closed category
Cartesian

closed category

4/25



Plan

Mackey-complete
topological vector spaces

Monoidal
closed category

Cartesian
closed category

5/25



Plan

Mackey-complete spaces
Linear

bounded maps
Cartesian

closed category

6/25



Plan
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Smoothness

I The first models of Differential Linear Logic were discrete,
operations being quantified on bases of vector spaces (Köthe
spaces, Finiteness spaces).

I However, differentiation is historically of a continuous nature.
We want to be able to match this intuition in a model of
Differential Linear Logic.

Kriegl and Michor, The convenient setting of global analysis, 1997

Blute, Ehrhard and Tasson, A convenient differential category, 2010
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Challenges

We want a cartesian closed category of differentiable function.

D(E × F ,G ) 6= D(E ,D(F ,G )

C∞(E × F ,G ) 6= C∞(E , C∞(F ,G ))

We need a good definition of smoothness

We also need tools to handle power series.

f =
∑
n︸︷︷︸

converging

fn

We need some notion of completeness as a way to obtain
convergence
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Taboo

A space of (non necessarily linear) functions between to finite
dimensional spaces is not finite dimensional.

dim C0(Cn,Cm) =∞.

We can’t restrict ourselves to finite dimensional spaces.

If we try to norm the spaces of (non necessarily linear) functions,
then we have a problem.

I We want to use power series or analytic functions.

I For polarity reasons, we want the supremum norm on spaces of power series.

I But a power series can’t be bounded on an unbounded space (Liouville’s Theorem).

I Thus functions must depart from an open ball, but arrive in a closed ball. Thus they do not compose.

I This is why Coherent Banach spaces don’t work.

We can’t restrict ourselves to normed spaces.
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Bounded sets and linear maps
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Topological vector spaces

We work with Haussdorf complex topological vector spaces :
complex vector spaces endowed with a Haussdorf topology making
addition and scalar multiplication continuous.

A bounded set B is a set such that for every open set U containing
0, there is a scalar r such that B ⊆ rU.

A function is a bounded function if it maps bounded sets on
bounded sets.

12/25



Mackey-completeness

A complete locally-convex topological vector space is a
locally-convex topological vector space in which every Cauchy net

converges
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Mackey-completeness

A Mackey-complete locally-convex topological vector space is a
locally-convex topological vector space in which every

Mackey-Cauchy sequence converges

A Mackey-Cauchy net in E is a net (xγ)γ∈Γ such that there is a
net of scalars λγ,γ′ decreasing towards 0 and a bounded set B of E
such that:

∀γ, γ′ ∈ Γ, xγ − xγ′ ∈ λγ,γ′B.

x1

x2

x3x4
x5

B
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Mackey-completeness

A Mackey-complete locally-convex topological vector space is a
locally-convex topological vector space in which every

Mackey-Cauchy sequence converges

A Mackey-Cauchy net in E is a net (xγ)γ∈Γ such that there is a
net of scalars λγ,γ′ decreasing towards 0 and a bounded set B of E
such that:

∀γ, γ′ ∈ Γ, xγ − xγ′ ∈ λγ,γ′B.

Mackey-completeness is a very weak condition and works well with
bounded sets.
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A monoidal closed category

I Endow E ⊗ F with the Mackey-completion of the finest locally
convex topology such that E × F → E ⊗ F is bounded.

I Endow the space L(E ,F ) of all linear bounded function
between E and F with the topology of uniform convergence
on bounded subsets of E .

One get a symmetric monoidal closed category of Mackey-complete
complex tvs and linear bounded maps between them.

L(E ⊗̂F ,G ) ' L(E ,L(F ,G ))
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Smooth functions
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Smooth maps à la Frölicher,Kriegl and Michor

A smooth curve c : R→ E is a curve infinitely many times
differentiable.

c f (c)

f

A smooth function f : E → F is a function sending a smooth curve
on a smooth curve.

In Banach spaces, the definition coincides with the usual one (all iterated

derivatives exists and are continuous).
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Bounded sets and smooth functions

Linear continuous functions are bounded, but a linear bounded
function may not be continuous.

UU

B B
`

`−1

However, linear bounded functions are smooth.
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Smooth functions and differentials

A smooth map is Gateau-differentiable. Let us write C∞(E ,F ) for
the space of all smooth maps between E and F .

Theorem

The differentiation operator

d̄ :


C∞(E ,F )→ C∞(E ,L(E ,F ))

f 7→
(
x 7→

(
y 7→ lim

t→0

f (x + ty)− f (x)

t

))
is well-defined, linear and bounded.
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Power series
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Anatomy

f =
∞∑
n=0

fn

f (x) = lim
N→∞

N∑
n=0

fn(x)

20/25



Anatomy

f =
∞∑
n=0

fn

fn is a n-monomial :
there is a bounded n-linear function f̃n

such that fn(x) = f̃n(x , ..., x)

The sum converges

uniformly on bounded sets
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Anatomy

f =
∞∑
n=0

fn

fn is a n-monomial

The sum converges

uniformly on bounded sets

∀B, ∀U, ∃N,
∑

n≤N fn(B) ⊂ U
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Anatomy

f =
∞∑
n=0

fn

fn is a n-monomial
The sum converges

uniformly on bounded sets

Prop : f is bounded Prop : f is smooth

Cauchy inequality : if f (b) ⊂ b′, then ∀n, fn(b) ⊂ b′
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Back to the scalars

Mackey-Arens theorem

A subset B ⊂ E is bounded iff for every ` ∈ E ′, l(b) is bounded in
C.

Scalar testing

Let f : E → F be a bounded function and let fk be k-monomials
such that for every ` ∈ F ′,

∑
k ` ◦ fk converges towards ` ◦ f

uniformly on bounded sets of E . Then, f =
∑

k fk is also a power
series.
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A cartesian closed category

Theorem : A category ...

The composition of a power series is a power series.

Let us write S(E ,F ) for the space of powers series between E and
F , endowed with the topology of uniform convergence on bounded
subsets of E .

Theorem

If E , F , and G are Mackey-complete spaces, then

S(E × F ,G ) ' S(E ,S(F ,G )).
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Cartesian closedness

proof

Going back to the scalar case and to Fubini’s theorem :
we can permute absolutely converging double series in C.

ψ :


S(E , S(F ,G ))→ S(E × F ,G )∑

n

(fn : x 7→
∑
m

f xn,m) 7→

(
(x , y) 7→

∑
k

∑
n+m=k

f xn,m(y)

)
.
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What if ...

... we wanted a smooth and quantitative model
of Intuitionistic Differential Linear Logic.

I The category of Mackey-complete reflexive spaces and linear
bounded map is not closed.

I We can cheat by the using pairs (as in Coherent Banach
spaces) or by endowing the spaces with their weak topology.
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Conclusion

I Mackey-completeness is a minimal and very weak condition
for power series to converge.

I The use of bounded sets and Mackey-convergence within
these sets is crucial.

I The quantitative setting allows for cartesian closedness.

I The topologies are simpler than in the model of intuitionistic
Differential Linear Logic with smooth maps (Blute, Ehrhard
and Tasson 2010).

Thank you !
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