Context Equivalences and Metrics in Probabilistic λ -Calculi

Ugo Dal Lago

(Based on joint work with Michele Alberti, Alberto Cappai, Raphaëlle Crubillé, Davide Sangiorgi,...)

QSLC, Marseille, September 3rd, 2016

► Terms:
$$M ::= x \mid \lambda x.M \mid MM \mid M \oplus M;$$

- ► Terms: $M ::= x \mid \lambda x.M \mid MM \mid M \oplus M;$
- Values: $V ::= \lambda x.M;$

- ► Terms: $M ::= x \mid \lambda x.M \mid MM \mid M \oplus M;$
- Values: $V ::= \lambda x.M;$
- ► Value Distributions:

$$V \xrightarrow{\mathcal{D}} \mathcal{D}(V) \in \mathbb{R}_{[0,1]}$$

$$\sum \mathcal{D} = \sum_{V} \mathcal{D}(V) \le 1.$$

- ► Terms: $M ::= x \mid \lambda x.M \mid MM \mid M \oplus M;$
- Values: $V ::= \lambda x.M;$
- ► Value Distributions:

$$V \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{D}(V) \in \mathbb{R}_{[0,1]}$$

$$\sum \mathcal{D} = \sum_{V} \mathcal{D}(V) \le 1.$$

• Semantics: $\llbracket M \rrbracket = \sup_{M \Downarrow \mathcal{D}} \mathcal{D};$

$$\frac{\overline{M \Downarrow \emptyset}}{\overline{W \Downarrow \emptyset}} \frac{\overline{W \Downarrow \{V^1\}}}{\overline{W \Downarrow \{V^1\}}} \frac{\overline{M \Downarrow \mathfrak{D}} N \Downarrow \mathfrak{E}}{\overline{M \oplus N \Downarrow \frac{1}{2} \mathfrak{D} + \frac{1}{2} \mathfrak{E}}} \\
\frac{\overline{M \Downarrow \mathscr{K}}}{\overline{MN \Downarrow \sum_{\lambda x. P \in \mathbf{S} \mathscr{K}}} \mathscr{K}(\lambda x. P) \cdot \mathscr{E}_P} \\
\frac{\overline{M \lor \mathscr{K}}}{\overline{V \lor (V \lor \mathbb{IN}[0,1]}} \frac{\overline{\mathcal{L}}}{\overline{V} \lor \mathbb{IN}[0,1]}} (V) \leq 1.$$

• Semantics: $\llbracket M \rrbracket = \sup_{M \Downarrow \mathcal{D}} \mathcal{D};$

- ► Terms: $M ::= x \mid \lambda x.M \mid MM \mid M \oplus M;$
- Values: $V ::= \lambda x.M;$
- ► Value Distributions:

$$V \xrightarrow{\mathcal{D}} \mathcal{D}(V) \in \mathbb{R}_{[0,1]} \qquad \qquad \sum \mathcal{D} = \sum_{V} \mathcal{D}(V) \le 1.$$

- Semantics: $\llbracket M \rrbracket = \sup_{M \Downarrow \mathcal{D}} \mathcal{D};$
- Context Equivalence: $M \equiv N$ iff for every context C it holds that $\sum [\![C[M]]\!] = \sum [\![C[N]]\!]$.

- Terms: $M ::= x \mid \lambda x.M \mid MM \mid M \oplus M;$
- Values: $V ::= \lambda x.M$;
- Value Distributions:

$$C ::= [\cdot] \mid \lambda x.C \mid CM \mid MC \mid C \oplus M \mid M \oplus C \bigvee^{(V)} \le 1$$

- Semantics: [[M]] = sup_{NUD} D;
 Context Equivalence: M ≡ N iff for every context C it holds that ∑[[C[M]]] = ∑[[C[N]]].

- ► Terms: $M ::= x \mid \lambda x.M \mid MM \mid M \oplus M;$
- Values: $V ::= \lambda x.M;$
- ► Value Distributions:

$$V \xrightarrow{\mathcal{D}} \mathcal{D}(V) \in \mathbb{R}_{[0,1]} \qquad \qquad \sum \mathcal{D} = \sum_{V} \mathcal{D}(V) \le 1.$$

- Semantics: $\llbracket M \rrbracket = \sup_{M \Downarrow \mathcal{D}} \mathcal{D};$
- Context Equivalence: $M \equiv N$ iff for every context C it holds that $\sum [\![C[M]]\!] = \sum [\![C[N]]\!]$.
- Context Distance: $\delta^C(M, N) = \sup_C |\sum \llbracket C[M] \rrbracket - \sum \llbracket C[N] \rrbracket|.$

$I \oplus \Omega$ vs. I

Examples $\Delta \Delta = (\lambda x.xx)(\lambda x.xx)$ $I\oplus \Omega$ vs. I

$I \oplus \Omega \quad \text{vs.} \quad I$ $I \oplus \Omega \quad \text{vs.} \quad \Omega$

$I \oplus \Omega$ vs. I $I \oplus \Omega$ vs. Ω $(\lambda x.I) \oplus (\lambda x.\Omega)$ vs. $\lambda x.I \oplus \Omega$

Terms

Terms

Values

Terms

Values

M

Terms

Values

÷

Terms

Values

$\lambda x.N$

 $\lambda x.M \ \Re \ \lambda x.N$

 $M \mathcal{R} N$

Bisimilarity vs. Context Equivalence

- **Bisimilarity**: the union \sim of all bisimulation relations.
- Is it that \sim is included in \equiv ? How to prove it?
- ▶ Natural strategy: is \sim a congruence?
 - ▶ If this is the case:

$$\begin{split} M \sim N \implies C[M] \sim C[N] \implies \sum \llbracket C[M] \rrbracket = \sum \llbracket C[N] \rrbracket \\ \implies M \equiv N. \end{split}$$

- ▶ This is a necessary sanity check anyway.
- ▶ The naïve proof by induction **fails**, due to application: from $M \sim N$, one cannot directly conclude that $LM \sim LN$.

 \mathcal{R}

 \mathcal{R}^{H}

Our Neighborhood

• Λ , where we observe **convergence**

[Abramsky1990, Howe1993]

∧⊕ with nondeterministic semantics, where we observe convergence, in its may or must flavors.

	$\sim \subseteq \equiv$	$\equiv \subseteq \sim$
CBN	\checkmark	×
CBV	\checkmark	×

[Ong1993, Lassen1998]

- ► Counterexample for CBN: $(\lambda x.I) \oplus (\lambda x.\Omega) \not\sim \lambda x.I \oplus \Omega$
- Where these discrepancies come from?

- ► Counterexample for CBN: $(\lambda x.I) \oplus (\lambda x.\Omega) \not\sim \lambda x.I \oplus \Omega$
- Where these discrepancies come from?
- From testing!

$$\begin{array}{c|c} \sim \subseteq \equiv & \equiv \subseteq \sim \\ \hline CBN & \checkmark & \times \\ \hline CBV & \checkmark & \checkmark \end{array}$$

- ► Counterexample for CBN: $(\lambda x.I) \oplus (\lambda x.\Omega) \not\sim \lambda x.I \oplus \Omega$
- Where these discrepancies come from?
- From testing!
- Bisimulation can be characterized by testing equivalence as follows:

Calculus	Testing		
Λ	$T ::= \omega a \cdot T$		
$P\Lambda_\oplus$	$T ::= \omega \mid a \cdot T \mid \langle T, T \rangle$		
$N\Lambda_\oplus$	$T ::= \omega \mid a \cdot T \mid \wedge_{i \in I} T_i \mid \ldots$		

• Λ_{\oplus} with probabilistic semantics.

$$\begin{array}{c|c} \overrightarrow{} \subseteq \leq \leq \subseteq \overrightarrow{} \\ \hline CBN & \checkmark & \times \\ \hline CBV & \checkmark & \times \end{array}$$

 Probabilistic simulation can be characterized by testing as follows:

$$T ::= \omega \mid a \cdot T \mid \langle T, T \rangle \mid T \lor T$$

• Λ_{\oplus} with probabilistic semantics.

$$\begin{array}{c|c} \overrightarrow{} \subseteq \leq \leq \subseteq \overrightarrow{} \\ \hline CBN & \checkmark & \times \\ \hline CBV & \checkmark & \times \end{array}$$

 Probabilistic simulation can be characterized by testing as follows:

$$T ::= \omega \mid a \cdot T \mid \langle T, T \rangle \mid T \vee T$$

► Full abstraction can be recovered if endowing Λ_{\oplus} with parallel disjunction [CDLSV2015].

	$\precsim \subseteq \leq$	\leq \subseteq \gtrsim
CBN	\checkmark	×
CBV	\checkmark	\checkmark

• Let us consider a simple fragment of Λ_{\oplus} , first.

- Let us consider a simple fragment of Λ_{\oplus} , first.
- ▶ **Preterms**: $M, N ::= x \mid \lambda x.M \mid MM \mid M \oplus M$;

- ▶ Let us consider a simple fragment of Λ_{\oplus} , first.
- ▶ **Preterms**: $M, N ::= x \mid \lambda x.M \mid MM \mid M \oplus M$;
- **Terms**: any preterm M such that $\Gamma \vdash M$.

- Let us consider a simple fragment of Λ_{\oplus} , first.
- ▶ **Preterms**: $M, N ::= x \mid \lambda x.M \mid MM \mid M \oplus M$;
- **Terms**: any preterm M such that $\Gamma \vdash M$.
- Behavioural Distance δ^b .
 - ▶ The metric analogue to bisimilarity.

- ▶ Let us consider a simple fragment of Λ_{\oplus} , first.
- ▶ **Preterms**: $M, N ::= x \mid \lambda x.M \mid MM \mid M \oplus M$;
- **Terms**: any preterm M such that $\Gamma \vdash M$.
- Behavioural Distance δ^b .
 - ▶ The metric analogue to bisimilarity.
- Trace Distance δ^t .
 - ► The maximum distance induced by traces, i.e., sequences of actions: $\delta^t(M, N) = \sup_{\mathsf{T}} |Pr(M, \mathsf{T}) Pr(N, \mathsf{T})|.$

- Let us consider a simple fragment of Λ_{\oplus} , first.
- ▶ **Preterms**: $M, N ::= x \mid \lambda x.M \mid MM \mid M \oplus M$;
- **Terms**: any preterm M such that $\Gamma \vdash M$.
- Behavioural Distance δ^b .
 - ▶ The metric analogue to bisimilarity.
- Trace Distance δ^t .
 - ► The maximum distance induced by traces, i.e., sequences of actions: $\delta^t(M, N) = \sup_{\mathsf{T}} |Pr(M, \mathsf{T}) Pr(N, \mathsf{T})|.$
- ▶ Soundness and Completeness Results:

$\delta^b \leq \delta^c$	$\delta^c \leq \delta^b$	$\delta^t \leq \delta^c$	$\delta^c \leq \delta^t$
\checkmark	×	\checkmark	\checkmark

- Let us consider a simple fragment of Λ_{\oplus} , first.
- ▶ **Preterms**: $M, N ::= x \mid \lambda x.M \mid MM \mid M \oplus M$;
- **Terms**: any preterm M such that $\Gamma \vdash M$.
- Behavioural Distance δ^b .
 - ▶ The metric analogue to bisimilarity.
- Trace Distance δ^t .
 - ► The maximum distance induced by traces, i.e., sequences of actions: $\delta^t(M, N) = \sup_{\mathsf{T}} |Pr(M, \mathsf{T}) Pr(N, \mathsf{T})|.$
- ▶ Soundness and Completeness Results:

$$\begin{array}{c|c|c|c|c|c|c|c|c|}\hline \delta^b \leq \delta^c & \delta^c \leq \delta^c & \delta^c \leq \delta^t \\ \hline \checkmark & \times & \checkmark & \checkmark & \checkmark \\ \hline \end{array}$$

• **Example**: $\delta^t(I, I \oplus \Omega) = \delta^t(I \oplus \Omega, \Omega) = \frac{1}{2}$.

► None of the abstract notions of distance δ gives us that $\delta(I, I \oplus \Omega) = 1.$

- ► None of the abstract notions of distance δ gives us that $\delta(I, I \oplus \Omega) = 1$.
- ► The underlying LMC **does not** reflect copying.

- ► None of the abstract notions of distance δ gives us that $\delta(I, I \oplus \Omega) = 1$.
- ► The underlying LMC **does not** reflect copying.
- A Tuple LMC.
 - ► Preterms:

 $M ::= x \mid \lambda x.M \mid \lambda ! x.M \mid MM \mid M \oplus M \mid !M$ **Terms**: any preterm M such that $\Gamma \vdash M$.

- **Terms:** any preterm *M* such that $\Gamma \vdash M$.
- ► **States**: *sequences* of terms, rather than terms.
- Actions not only model parameter passing, but also *copying* of terms.

copying of terms.

- ► None of the abstract notions of distance δ gives us that $\delta(I, I \oplus \Omega) = 1$.
- ► The underlying LMC **does not** reflect copying.
- A Tuple LMC.
 - ► Preterms:

 $M ::= x \mid \lambda x.M \mid \lambda!x.M \mid MM \mid M \oplus M \mid !M$

- **Terms**: any preterm M such that $\Gamma \vdash M$.
- ▶ **States**: *sequences* of terms, rather than terms.
- Actions not only model parameter passing, but also copying of terms.
- ▶ Soundness and Completeness Results:

$\delta^t \leq \delta^c$	$\delta^c \leq \delta^t$
\checkmark	\checkmark

- ► None of the abstract notions of distance δ gives us that $\delta(I, I \oplus \Omega) = 1$.
- ► The underlying LMC **does not** reflect copying.
- ► A Tuple LMC.
 - ▶ Preterms:

$$M ::= x \mid \lambda x.M \mid \lambda!x.M \mid MM \mid M \oplus M \mid !M$$

- **Terms**: any preterm M such that $\Gamma \vdash M$.
- ▶ **States**: *sequences* of terms, rather than terms.
- Actions not only model parameter passing, but also copying of terms.
- ▶ Soundness and Completeness Results:

$$\begin{array}{c|c} \delta^t \leq \delta^c & \delta^c \leq \delta^t \\ \hline \checkmark & \checkmark \end{array}$$

• Examples: $\delta^t(!(I \oplus \Omega), !\Omega) = \frac{1}{2} \qquad \delta^t(!(I \oplus \Omega), !I) = 1.$

- ► None of the abstract notions of distance δ gives us that $\delta(I, I \oplus \Omega) = 1$.
- ► The underlying LMC **does not** reflect copying.
- ► A Tuple LMC.
 - ► Preterms:

$$M ::= x \mid \lambda x.M \mid \lambda!x.M \mid MM \mid M \oplus M \mid !M$$

- **Terms**: any preterm M such that $\Gamma \vdash M$.
- ▶ **States**: *sequences* of terms, rather than terms.
- Actions not only model parameter passing, but also copying of terms.
- ▶ Soundness and Completeness Results:

$$\begin{array}{c|c} \delta^t \leq \delta^c & \delta^c \leq \delta^t \\ \hline \checkmark & \checkmark \end{array}$$

- Examples: $\delta^t(!(I \oplus \Omega), !\Omega) = \frac{1}{2} \qquad \delta^t(!(I \oplus \Omega), !I) = 1.$
- ▶ **Trivialisation** does not hold in general, but becomes true in *strongly normalising* fragments or in presence of *parellel disjuction*.

Open Problems

▶ Would it be possible to read the distance between two terms *M* and *N* from their interpretations $\llbracket M \rrbracket$ and $\llbracket N \rrbracket$ (given in a suitable denotational model?).

Open Problems

- ▶ Would it be possible to read the distance between two terms *M* and *N* from their interpretations $\llbracket M \rrbracket$ and $\llbracket N \rrbracket$ (given in a suitable denotational model?).
- ► Applications to Cryptography?
 - **Computational indistinguishability** is a key notion of cryptography, and can be seen as a form of parametric equivalence.
 - We have a preliminary work on characterizing it as trace equivalence in a λ-calculus for polynomial time, called RSLR [CDL2015].

 $\{\mathcal{D}_n\}_{n\in\mathbb{N}}$ and $\{\mathcal{E}_n\}_{n\in\mathbb{N}}$ (where both \mathcal{D}_n and \mathcal{E}_n are distributions on binary strings) are said to be *computationally indistinguishable* iff for every PPT algorithm \mathcal{A} the following quantity is a negligible function of $n \in \mathbb{N}$:

veen two[] and [N]

$$\left|\operatorname{Pr}_{x\leftarrow\mathcal{D}_n}(\mathcal{A}(x,1^n)=\epsilon)-\operatorname{Pr}_{x\leftarrow\mathcal{E}_n}(\mathcal{A}(x,1^n)=\epsilon)\right|.$$

- Applications to Cryptography?
 - **Computational indistinguishability** is a key notion of cryptography, and can be seen as a form of parametric equivalence.
 - We have a preliminary work on characterizing it as trace equivalence in a λ-calculus for polynomial time, called RSLR [CDL2015].

Open Problems

- ▶ Would it be possible to read the distance between two terms *M* and *N* from their interpretations $\llbracket M \rrbracket$ and $\llbracket N \rrbracket$ (given in a suitable denotational model?).
- Applications to Cryptography?
 - **Computational indistinguishability** is a key notion of cryptography, and can be seen as a form of parametric equivalence.
 - We have a preliminary work on characterizing it as trace equivalence in a λ-calculus for polynomial time, called RSLR [CDL2015].
- ▶ Higher-order computational indistinguishability?

Thank You!

Questions?