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Syntax and Operational Semantics of Λ⊕

I Terms: M ::= x | λx.M | MM | M ⊕M ;

I Values: V ::= λx.M ;
I Value Distributions:

V
D−→ D(V ) ∈ R[0,1]

∑
D =

∑
V

D(V ) ≤ 1.

I Semantics: JMK = supM⇓DD;

M ⇓ ∅ V ⇓ {V 1}
M ⇓ D N ⇓ E

M ⊕N ⇓ 1
2D + 1

2E

M ⇓ K {P [N/x] ⇓ E P }λx.P∈SK

MN ⇓
∑

λx.P∈SK

K (λx.P ) · EP

I Context Equivalence: M ≡ N iff for every context C it
holds that

∑
JC[M ]K =

∑
JC[N ]K.

C ::= [·] | λx.C | CM | MC | C⊕M | M⊕C

I Context Distance:
δC(M,N) = supC |

∑
JC[M ]K−

∑
JC[N ]K|.
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Examples

I ⊕ Ω vs. I

I ⊕ Ω vs. Ω

(λx.I)⊕ (λx.Ω) vs. λx.I ⊕ Ω

λx.x∆∆ = (λx.xx)(λx.xx)

Not Context Equivalent: C = [·].
Context Distance? Consider Cn = (λx. x . . . x︸ ︷︷ ︸

n times
)[·].

Not Context Equivalent: C = [·].
Context Distance? Cannot Easily Amplify.

Not Context Equivalent in CBV: C = (λx.x(xI))[·]
Apparently Context Equivalent in CBN.
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A Labelled Markov Chain for Λ⊕
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M V

W

Z

...

eval, JMK(V )

eval, JMK(W )

eval, JMK(Z)
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A Labelled Markov Chain for Λ⊕

Terms Values

M V

W

Z

...

eval, JMK(V )

eval, JMK(W )

eval, JMK(Z)

λx.NN{W/x}
W , 1



Probabilistic Bisimulation Relations

λx.M R λx.N

M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E) JNK(E)=
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Bisimilarity vs. Context Equivalence

I Bisimilarity: the union ∼ of all bisimulation relations.
I Is it that ∼ is included in ≡? How to prove it?
I Natural strategy: is ∼ a congruence?

I If this is the case:

M ∼ N =⇒ C[M ] ∼ C[N ] =⇒
∑

JC[M ]K =
∑

JC[N ]K

=⇒M ≡ N.

I This is a necessary sanity check anyway.
I The naïve proof by induction fails, due to application:

from M ∼ N , one cannot directly conclude that LM ∼ LN .



Howe’s Technique

R RH

⊆

RH is a
Congruence
whenever R is
an equivalence

∼H is a
Congruence

∼ ∼H

⊇

Key Lemma
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Our Neighborhood

I Λ, where we observe convergence

∼ ⊆ ≡ ≡ ⊆ ∼
CBN X X

CBV X X

[Abramsky1990, Howe1993]
I Λ⊕ with nondeterministic semantics, where we observe

convergence, in its may or must flavors.

∼ ⊆ ≡ ≡ ⊆ ∼
CBN X ×
CBV X ×

[Ong1993, Lassen1998]



The Probabilistic Case
I Λ⊕ with probabilistic semantics.

∼ ⊆ ≡ ≡ ⊆ ∼
CBN X ×
CBV X X

I Counterexample for CBN: (λx.I)⊕ (λx.Ω) 6∼ λx.I ⊕ Ω

I Where these discrepancies come from?
I From testing!
I Bisimulation can be characterized by testing equivalence as

follows:

Calculus Testing
Λ T ::= ω | a · T

PΛ⊕ T ::= ω | a · T | 〈T, T 〉
NΛ⊕ T ::= ω | a · T | ∧i∈I Ti | . . .
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I Probabilistic simulation can be characterized by testing as
follows:

T ::= ω | a · T | 〈T, T 〉 | T ∨ T

I Full abstraction can be recovered if endowing Λ⊕ with
parallel disjunction [CDLSV2015].
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Context Distance: the Affine Case [CDL2015]

I Let us consider a simple fragment of Λ⊕, first.

I Preterms: M,N ::= x | λx.M | MM | M ⊕M ;
I Terms: any preterm M such that Γ `M .

Γ, x ` x
x,Γ `M
Γ ` λx.M

Γ `M ∆ ` N
Γ,∆ `MN

Γ `M Γ ` N
Γ `M ⊕N

I Behavioural Distance δb.
I The metric analogue to bisimilarity.

I Trace Distance δt.
I The maximum distance induced by traces, i.e., sequences of

actions: δt(M,N) = supT |Pr(M,T)− Pr(N,T)|.
I Soundness and Completeness Results:

δb ≤ δc δc ≤ δb δt ≤ δc δc ≤ δt

X × X X

I Example: δt(I, I ⊕ Ω) = δt(I ⊕ Ω,Ω) = 1
2 .
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Context Distance: the General Case [CDL2016]
I None of the abstract notions of distance δ gives us that
δ(I, I ⊕ Ω) = 1.

I The underlying LMC does not reflect copying.
I A Tuple LMC.

I Preterms:
M ::= x | λx.M | λ!x.M | MM | M ⊕M | !M

I Terms: any preterm M such that Γ `M .

!Γ, x ` x !Γ, !x ` x
x,Γ `M
Γ ` λx.M

!x,Γ `M
Γ ` λ!x.M

!Γ `M
!Γ `!M

Γ, !Θ `M ∆, !Θ ` N
Γ,∆,Θ `MN

Γ `M Γ ` N
Γ `M ⊕N

I States: sequences of terms, rather than terms.
I Actions not only model parameter passing, but also

copying of terms.
I Soundness and Completeness Results:

δt ≤ δc δc ≤ δt

X X
I Examples: δt(!(I ⊕ Ω), !Ω) = 1

2 δt(!(I ⊕ Ω), !I) = 1.
I Trivialisation does not hold in general, but becomes true

in strongly normalising fragments or in presence of parellel
disjuction.
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Open Problems

I Would it be possible to read the distance between two
terms M and N from their interpretations JMK and JNK
(given in a suitable denotational model?).

I Applications to Cryptography?
I Computational indistinguishability is a key notion of

cryptography, and can be seen as a form of parametric
equivalence.

I We have a preliminary work on characterizing it as trace
equivalence in a λ-calculus for polynomial time, called RSLR
[CDL2015].

{Dn}n∈N and {En}n∈N (where both Dn and En are
distributions on binary strings) are said to be com-
putationally indistinguishable iff for every PPT algo-
rithm A the following quantity is a negligible func-
tion of n ∈ N:

|Prx←Dn(A(x, 1n) = ε)− Prx←En(A(x, 1n) = ε)| .

I Higher-order computational indistinguishability?
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Thank You!

Questions?


