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» Semantics: [M] = supyp D;

» Context Equivalence: M = N iff for every context C it
holds that > [C[M]] = > [C[N]].

» Context Distance:

09(M,N) = sup¢ | Z[CIM]] = S[CIN]I-
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Not Context Equivalent in CBV: C' = (A\zx.z(z1))[]
Apparently Context Equivalent in CBN.
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L
eval [[M]]—\
M R N [M](E)=[N](E)



Bisimilarity vs. Context Equivalence

v

Bisimilarity: the union ~ of all bisimulation relations.

v

Is it that ~ is included in =7 How to prove it?

v

Natural strategy: is ~ a congruence?
» If this is the case:

M~N = OM]~CIN] = S [0M]] = Y [CIV]
— M = N.

» This is a necessary sanity check anyway.

v

The naive proof by induction fails, due to application:
from M ~ N, one cannot directly conclude that LM ~ LN.
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Our Neighborhood

» A, where we observe convergence

NQE

Il
IN
2

CBN
CBV

[Abramsky1990, Howe1993|

» Ag with nondeterministic semantics, where we observe
convergence, in its may or must flavors.

CBN X
CBV X

[Ong1993, Lassen1998|
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» Counterexample for CBN: (Az.I) & (Az.Q) % A\z.l &
» Where these discrepancies come from?
» From testing!
» Bisimulation can be characterized by testing equivalence as
follows:
Calculus Testing
A T:=w | a-T
PAg Ti=w|a-T | (TT)

NAg T:=w ‘ a-T | Nier T; |
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The Probabilistic Case
» Ag with probabilistic semantics.
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» Probabilistic simulation can be characterized by testing as
follows:

Ti=w|a-T|(TT) | TVT

» Full abstraction can be recovered if endowing Ag with
parallel disjunction [CDLSV2015].
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Context Distance: the Affine Case [CDL2015]

> Let us consider a simple fragment of Ag), first.
» Preterms: M,N =z | \e.M | MM | M & M,

» Terms: any preterm M such that I' - M.

» Behavioural Distance §°.

» The metric analogue to bisimilarity.
» Trace Distance §'.

» The maximum distance induced by traces, i.e., sequences of

actions: 0*(M, N) = supt |Pr(M,T) — Pr(N,T)|.

» Soundness and Completeness Results:

50 < §¢

5¢ < §°

ot < §¢

§¢ < o

X

» Example: 5t(I,I€B D) =5681ToQ0) = %
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Context Distance: the General Case [CDL2016]

» None of the abstract notions of distance § gives us that
S, I®Q) = 1.
» The underlying LMC does not reflect copying.
» A Tuple LMC.
» Preterms:
Mu=z | XeM | NaM | MM | Mo M | \M
» Terms: any preterm M such that T' - M.
» States: sequences of terms, rather than terms.
» Actions not only model parameter passing, but also
copying of terms.

» Soundness and Completeness Results:

ot < 61 5° < ot

» Examples: §'(!/(I&Q),!1Q) =1 §((TeQ),!I)=1

» Trivialisation does not hold in general, but becomes true
in strongly normalising fragments or in presence of parellel
disjuction.
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» Applications to Cryptography?

» Computational indistinguishability is a key notion of
cryptography, and can be seen as a form of parametric
equivalence.

» We have a preliminary work on characterizing it as trace

equivalence in a A-calculus for polynomial time, called RSLR
[CDL2015].
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{Drn}nen and {&€, }nen (where both D,, and &, are
distributions on binary strings) are said to be com-
putationally indistinguishable iff for every PPT algo-
rithm A the following quantity is a negligible func-
tion of n € N:

|Prycop, (A(z,1") =€) — Pryce¢, (A(z,1") = €)].
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Open Problems

» Would it be possible to read the distance between two
terms M and N from their interpretations [M] and [N]
(given in a suitable denotational model?).

» Applications to Cryptography?

» Computational indistinguishability is a key notion of
cryptography, and can be seen as a form of parametric
equivalence.

» We have a preliminary work on characterizing it as trace

equivalence in a A-calculus for polynomial time, called RSLR
[CDL2015].

» Higher-order computational indistinguishability?



Thank You!

(Questions?



