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Aims

» Give a categorical model of higher-order computation with
quantities.

> A general way of moving from existing, qualitative models, to
quantitative ones ...

» ... which captures existing examples (non-deterministic games
[Harmer and McCusker|, probabilistic games [Danos and
Harmer], slot games [Ghica]).



Enriched Categories

We may represent the two level structure we want to capture
(computation, quantities) using enriched categories:
Let V be a monoidal category (the base).Recall that a V-category C
is given by:
> A set Objc
» A V-object C(A, B) for each A, B € Obje.
» V-morphisms ids : | — C(A, A) and
compag,c : C(A,B)®C(B,C) — C(A, C) satisfying the
relevant diagrams.



Constructing Differential Categories, Deconstructing
Games

[L., McCusker Manzonetto, 1&C '13] Start with any symmetric
monoidal category, C:
1. Freely enrich over sup-lattices (i.e. morphisms are sets of
C-morphisms), to get a commutative-monoid-enriched category.
2. Complete with countable, distributive biproducts
3. Take the Karoubi envelope (free idempotent splitting) — giving
symmetric tensor powers by splitting the idempotents

We can then construct the cofree commutative comonoid by
Lafont's construction, giving a differential closed category.



A blueprint for constructing quantitative models?

» Starting with C as the category with one-object and one
morphism, we get the category of relations, with the multiset
exponential.

» Starting with C as a simple category of games (essentially, the

free SMCC over 1 object), we get a HO-style, fully complete
model of “differential PCF".

Can we generalize this? The problematic step is free sup-lattice
enrichment:
> Applying this to e.g. history sensitive strategies does not give
us non-deterministic strategies.

» How do we enrich over other kinds of quantities — e.g. natural
numbers, probabilities, dioids?



R-weighted Relations

[L., Manzonetto,McCusker,Pagani - LICS '13] For any continuous
semiring R.:
» Construction of a Lafont category (model of ILL with free
exponential) in which objects are sets and morphisms from A
to B are A x B matrices.

> Models of PCF with a sum operator and weights from R.

» Key property: Computational Adequacy — denotation of a
program given by the weighted sum of its reduction paths. Not
fully abstract.

Can we generalize this?

» To models with richer structure (e.g. games) — interpret
computational effects, prove full abstraction.

» To complete semirings (can’t enrich over continuous monoids,
and some interesting examples are not continuous).



Lafont Categories With Biproducts

[L. LICS'16] A categorical semantics for quantitative higher-order
computation: Lafont categories with biproducts — in which we
define:
1. a parameterised uniform fixed point operator, using principles
of axiomatic domain theory.
2. a computationally adequate semantics of PCF™ with weights
from the internal semiring — proved using a resource
A-calculus with nested finite multiset resources.



Biproducts

A category C has (finite) biproducts if it has (finite) products and
coproducts, and these are naturally isomorphic:

> The category of sets and functions does not have biproducts.

» The category of F-vector spaces always has finite biproducts
(the direct sum) but never has infinite biproducts.

» The category of sets and relations has all biproducts (disjoint
unions).

Note that biproducts in a symmetric monoidal closed category are
distributive: A® @, Bi = P, (A® By).



From Biproducts to Complete Monoid Enrichment

In a category with biproducts we may define the sum of a family of
morphisms {f; : A — B}¢;:

Yiefi=(filiel)lidg [ iel]={(da|icl)[fi|iell

This is a complete monoid — an indexed sum ¥ such that:
» If | is partitioned into {/; | j € J} then L;cja; = Lje 2 i) a;.
> If ] = {_j} then X;cja; = aj.

C is enriched over the category of complete monoids.



Symmetric Monoidal Categories and Complete Semirings

» In any (symmetric) monoidal category (C,®, /) we may define
“scalar multiplication” of g: A— B by f: [ — |

fgAxIoA 81988

» If C (and ®) is complete-monoid-enriched, scalar multiplication
distributes over the sum, so C(/,/) is a (commutative)
complete semiring — the “internal semiring”
Rec=(C(I,1),%,-,id)).

» C is enriched over the category of R-modules.



From Complete Monoid Enrichment to Biproducts

For C complete monoid enriched, the biproduct completion C™ has:
» Objects — indexed families of objects of C.
» Morphisms from {A;}ic; to {B;}jc; — | x J "matrices” of
morphisms; {fj : Ai = Bj}ijcixy

Composition is by “matrix multiplication”:

{fitiicixsi {8jk}ikesxk = {Xjesfi; gjk tikeixk

Since any complete, commutative semiring R is a one-object
complete-monoid-enriched SMCC, R™ is a SMCC with biproducts —
a.k.a.

» The category of sets and R-weighted relations.

» The category of free R-modules and their homomorphisms.



Lafont Categories

A SMCC with (bi)products C is a Lafont Category if the forgetful
functor into C from its category of commutative comonoids has a
right adjoint.

In other words, for every object A in C there is:

» A commutative comonoid (!A, 04 :!1A =!A®!A, ea 1A — 1)

» which is “cofree”: there is a morphism ders :!A — A giving a
natural isomorphism between morphisms into A and comonoid
morphisms into !A.

Resolving this (monoidal) adjunction gives a (monoidal) comonad
' C — C, and thus a (cartesian closed) co-Kleisli category C; .



Cofree commutative comonoids in R"

Proposition R" is a Lafont category.

For any set S, !S is the set M,(S) of finite multisets over S, with:
> Oxyz = 1if X =YW Z and 0 otherwise.
> exx = 1if X =[] and 0 otherwise.
» derxy = 1if X =[Y] and 0 otherwise.

For any f :IS — T, define the comonoid morphism

va[_Vly‘..,Yn] 15 =T = Z{th}’l et ana}’n ‘ X=X1+...+ X,,}



Fixed Point Operators

To interpret recursively defined functions we require a fixed point
operator for C; — a map sending f :!A — A to fix(f) :!1 — A such
that fix(f) = fix(f)T; .

It is uniform in ! if f; h =!h; g implies fix(g) = fix(f); h.



Fixed Point Operators

To interpret recursively defined functions we require a fixed point
operator for C; — a map sending f :!A — A to fix(f) :!1 — A such
that fix(f) = fix(f)f; f.

It is uniform in ! if f; h =!h; g implies fix(g) = fix(f); h.

How can we obtain such a fixed point?

» CPO enrichment of C? — Only definable if the internal
semiring is continuous.

» Trace operator on C? — Only uniform (and adequate) if the
internal semiring is idempotent.

> A Bifree Algebra for the exponential ?



Fixed Points from Bifree Algebras

A bifree algebra for | : C — C is an object A with an isomorphism
a 1A= A such that:

» «:lA — Ais an initial algebra for !.

» a1 : A—lAis a final coalgebra for !.



Fixed Points from Bifree Algebras

Proposition[After Freyd (1990) and Simpson and Plotkin (200)] If
I C — C has a bifree algebra W then C has a unique uniform fixed

point operator.

> id;r1 :11 =11 has a unique anamorphism oo :!1 — W such that
oo;qbil = id;rl; loo = oo

» Any f :!A — A has a unique catamorphism ([f]) : ¥ — A such
that ¢; (f]) =!(f)); f. Let fix(f) :!11 = A = oo; ()

> fix(F)T; f = (oo; (F))T; f = cof; I([f]); f = oo; ™14 () =
oo; ([f) = fix(f).

» Uniformity and uniqueness follow from uniqueness of
catamorphisms and anamorphisms.



The Bifree Algebra of Nested Finite Multisets

Theorem If C is a Lafont category with biproducts then C; has a
uniform fixed point operator.
Observe that the functor from R{ to C sending S to @, /

preserves cofree exponentials —i.e. '@ ,cs/ = Dacr,(s)!
» Let M be the set of finite nested multisets — i.e.
M = U,en M, where My = & and M1 = M, (M;). Then
M, (M) = M.

> Hence V =@y ! = Djepr. )/ and so W =W in C.

We show that this isomorphism is a bifree algebra for ! : C — C.



R-weighted A-terms

Extend an applied A-calculus (PCF) with:

» Erratic choice:
[FM:mnat [FN:nat
=M or N:nat

» “Scalar Weights" from a complete semiring R

[-M:nat
Ma.M:nat?

€R



Operational Semantics

Define a labelled transition system in which
» states are programs of PCFR (closed terms of ground type).
> labels are elements of {/,r}* x |R].

» actions are as follows:

EMorN] 5 E[M] EMorN] % E[N]
ElaM] =% E[M] E[M] =L EMY

where M — M’ is a PCF reduction.



Path Weights

For closed terms M, N and a path s € {/, r}*, define a weight in R:

» ws(M,N) = a;-...-a, if there exists a reduction
M2 % N such that s=uy - ... u,.

» ws(M, N) =0, otherwise.
We evaluate M at n by taking the sum in R of path-weights:
W(M7 n) = ZSG{/,r}" WS(M’n)'
Note that if M is strongly convergent (has no infinite reduction
paths) this is a finite sum by Konig's Lemma.



Example
Let B = px.1or a.suc(x):

B
l/(&,l)
1 or a.suc(B) 1)
i T
1 a.suc(B)
V(5.2
suc(B)
(1)
suc(1or g.suc(B)?r’l)

\
2 M suc(a.suc(B))

| (c2)
suc(suc(B))
V(e

W(M,n) = a"! for n > 0.



Continuous Semirings

There are many computationally interesting examples of complete
semirings e.g.:

» complete lattices (security),

» positive reals, (R4 U oo, X, X, 1) (probability)

» tropical semirings —e.g.(N U oo, max, +,0) (longest path).
The above are continuous semirings — they can be ordered so that
sum and product are continuous.



Non-continuous Semirings

Let (|R|,+,+,1) be any commutative semiring without (necessarily)
additive identity. Define a complete semiring
Ry = (|R|w{0,00}, %, -, 1), where:
> Z;e/aiZOif/OCé{l'E/|a,'750}:@
> Yierai = Yjgjcaj, if 0 < | <ooand {i€l]a =} =0
> 3 ;c1a; = oo, otherwise.
and a.0o =00.a=0if a=0; a.00 = co.a = 00, otherwise.
This is not continuous in general — e.g. if R is finite.



Nested multiset approximants

To prove computational adequacy, we represent fixed points as sums
of approximants, indexed over M:
» We show that oo : | — W = X xcmex (where
tx | = @xen ! is the Xth injection.
» Let X1 1A =ux; (f).
Then fix(f) = TxemfX
Each X € M represents a unique forest of nested calls to f — i.e.

fIX1-Xi] corresponds to k recursive calls to f at top level, which

make nested calls to f with call-patterns Xi,..., X, and so on.



Computational Adequacy for PCFF

Theorem If C is a Lafont category with biproducts with R C Re,
then for any program M

[M] = Zren(W (M, n) - [n])

» Usual proof techniques (logical relations) depend on continuity.

» We use a translation into an equivalent operational semantics
which nondeterministically assigns an explicit multiplicity to
each variable — either a natural number or a nested multiset
(for recursively defined variables). — cf. the resource
A-calculus.

» We define the denotational semantics of this system using our
semantic approximants to the fixed point.



Qualitative to Quantitative Models: Change of Base

Suppose F : V — U is a monoidal functor, with

mapg: FA® FB — F(A® B) and m; : | — FI. Then for any
V-enriched category C, F induces a U-enriched category FC by
change of base:

» Objrc = Objc
» FC(A,B) = F(C(A, B))
» The identity and composition morphisms are
my; (Fida) : I — FC(A, B) and
me(a,B),c(8,c): compa,c : FC(A,B) ® FC(B, C) — C(A, C).
Example — for any V, the functor V(/,_) : V — Set is monoidal —
for any V-category C, change of base along this functor gives the
underlying category Cp.
Observe that F acts as a functor from Cy to (FC)o.



From Coherence Spaces to R"

Consider the (strict monoidal) “forgetful” functor ® from the
category of coherence spaces and stable, linear maps (cliques of
A —o B) to R™:
> Or(|Al, =) = |A]
» For f: A— B, ®g(f) : |A| X |B| = R is the characteristic
function of R — ®g(f)(a,b) = 1if (a,b) € R, 0 otherwise.

Note that stability is crucial for functoriality.



Coherence Enriched Categories

Many categories (hypercoherences, event structures, sequential
algorithms...) bear a natural enrichment over coherence spaces. For
example, games and history-free strategies (used by Abramsky and
McCusker to interpret Idealized Algol):

» Objects are games.

» G(A, B) is the set La g of complete (legal) sequences on
A — B, with s = t if st is even-length.
» compag.c is the set of ((r,s),t) € Laop X Lp—oc X Lp-oc
such that there exists u with uf[A — B =r, u[B — C = s and
ufA — C = t,
Stability of composition is the Zipping Lemma.



R-weighted strategies

The underlying category ®rG has games as objects, maps from A
to B are maps from L g to R.

» If R is the Boolean semiring ({T,L},\/, T,A) then ®gG is
the category of games and nondeterministic strategies

» If R is the probability semiring (R, ¥, 1, x) then ®rG is the
category of probabilistic games and pre-strategies (Danos and
Harmer).

> If R is the tropical semiring (N°°,\/,0, +) then ®zG is the
category of slot games (Ghica).



R-weighted ldealized Algol

» Change of base induces/preserves categorical structure on
games which we have used to define a categorical model of
Idealized Algol (in particular, a monoidal action
@ :Gs X G — Gg of G on a subcategory Gs, such that the free
l'is a final coalgebra for J(A@ _) x I).

» So we get a sound model of JAR, with meaning-preserving
functor from the qualitative model : computational adequacy
proved as for PCFF .

» Full abstraction follows easily from definability of the basis in
Idealized Algol, proved by Abramsky and McCusker.



