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Aims

I Give a categorical model of higher-order computation with
quantities.

I A general way of moving from existing, qualitative models, to
quantitative ones ...

I ... which captures existing examples (non-deterministic games
[Harmer and McCusker], probabilistic games [Danos and
Harmer], slot games [Ghica]).



Enriched Categories

We may represent the two level structure we want to capture
(computation, quantities) using enriched categories:
Let V be a monoidal category (the base).Recall that a V-category C
is given by:

I A set ObjC
I A V-object C(A,B) for each A,B ∈ ObjC .

I V-morphisms idA : I → C(A,A) and
compA,B,C : C(A,B)⊗ C(B,C )→ C(A,C ) satisfying the
relevant diagrams.



Constructing Differential Categories, Deconstructing
Games

[L., McCusker Manzonetto, I&C ’13] Start with any symmetric
monoidal category, C:

1. Freely enrich over sup-lattices (i.e. morphisms are sets of
C-morphisms), to get a commutative-monoid-enriched category.

2. Complete with countable, distributive biproducts

3. Take the Karoubi envelope (free idempotent splitting) — giving
symmetric tensor powers by splitting the idempotents

We can then construct the cofree commutative comonoid by
Lafont’s construction, giving a differential closed category.



A blueprint for constructing quantitative models?

I Starting with C as the category with one-object and one
morphism, we get the category of relations, with the multiset
exponential.

I Starting with C as a simple category of games (essentially, the
free SMCC over 1 object), we get a HO-style, fully complete
model of “differential PCF”.

Can we generalize this? The problematic step is free sup-lattice
enrichment:

I Applying this to e.g. history sensitive strategies does not give
us non-deterministic strategies.

I How do we enrich over other kinds of quantities — e.g. natural
numbers, probabilities, dioids?



R-weighted Relations

[L., Manzonetto,McCusker,Pagani - LICS ’13] For any continuous
semiring R:

I Construction of a Lafont category (model of ILL with free
exponential) in which objects are sets and morphisms from A
to B are A× B matrices.

I Models of PCF with a sum operator and weights from R.

I Key property: Computational Adequacy — denotation of a
program given by the weighted sum of its reduction paths. Not
fully abstract.

Can we generalize this?

I To models with richer structure (e.g. games) — interpret
computational effects, prove full abstraction.

I To complete semirings (can’t enrich over continuous monoids,
and some interesting examples are not continuous).



Lafont Categories With Biproducts

[L. LICS’16] A categorical semantics for quantitative higher-order
computation: Lafont categories with biproducts — in which we
define:

1. a parameterised uniform fixed point operator, using principles
of axiomatic domain theory.

2. a computationally adequate semantics of PCF+ with weights
from the internal semiring — proved using a resource
λ-calculus with nested finite multiset resources.



Biproducts

A category C has (finite) biproducts if it has (finite) products and
coproducts, and these are naturally isomorphic:

I The category of sets and functions does not have biproducts.

I The category of F-vector spaces always has finite biproducts
(the direct sum) but never has infinite biproducts.

I The category of sets and relations has all biproducts (disjoint
unions).

Note that biproducts in a symmetric monoidal closed category are
distributive: A⊗

⊕
i∈I Bi

∼=
⊕

i∈I (A⊗ Bi ).



From Biproducts to Complete Monoid Enrichment

In a category with biproducts we may define the sum of a family of
morphisms {fi : A→ B}i∈I :

Σi∈I fi = 〈fi |i ∈ I 〉; [idB | i ∈ I ] = 〈idA | i ∈ I 〉; [fi | i ∈ I ]

This is a complete monoid — an indexed sum Σ such that:

I If I is partitioned into {Ij | j ∈ J} then Σi∈Iai = Σj∈JΣi∈Ijai .

I If I = {j} then Σi∈Iai = aj .

C is enriched over the category of complete monoids.



Symmetric Monoidal Categories and Complete Semirings

I In any (symmetric) monoidal category (C,⊗, I ) we may define
“scalar multiplication” of g : A→ B by f : I → I

f · g : A ∼= I ⊗ A
f⊗g−→ I ⊗ B ∼= B

I If C (and ⊗) is complete-monoid-enriched, scalar multiplication
distributes over the sum, so C(I , I ) is a (commutative)
complete semiring — the “internal semiring”
RC = (C(I , I ),Σ, ·, idI ).

I C is enriched over the category of RC -modules.



From Complete Monoid Enrichment to Biproducts

For C complete monoid enriched, the biproduct completion CΠ has:

I Objects — indexed families of objects of C.

I Morphisms from {Ai}i∈I to {Bj}j∈J — I × J “matrices” of
morphisms; {fij : Ai → Bj}ij∈I×J

Composition is by “matrix multiplication”:

{fij}ij∈I×J ; {gjk}jk∈J×K = {Σj∈J fij ; gjk}ik∈I×K

Since any complete, commutative semiring R is a one-object
complete-monoid-enriched SMCC, RΠ is a SMCC with biproducts —
a.k.a.

I The category of sets and R-weighted relations.

I The category of free R-modules and their homomorphisms.



Lafont Categories

A SMCC with (bi)products C is a Lafont Category if the forgetful
functor into C from its category of commutative comonoids has a
right adjoint.
In other words, for every object A in C there is:

I A commutative comonoid (!A, δA :!A→!A⊗!A, εA :!A→ I )

I which is “cofree”: there is a morphism derA :!A→ A giving a
natural isomorphism between morphisms into A and comonoid
morphisms into !A.

Resolving this (monoidal) adjunction gives a (monoidal) comonad
! : C → C, and thus a (cartesian closed) co-Kleisli category C! .



Cofree commutative comonoids in RΠ

Proposition RΠ is a Lafont category.

For any set S , !S is the set M∗(S) of finite multisets over S , with:

I δXYZ = 1 if X = Y ] Z and 0 otherwise.

I εX∗ = 1 if X = [ ] and 0 otherwise.

I derXY = 1 if X = [Y ] and 0 otherwise.

For any f :!S → T , define the comonoid morphism
f †X ,[y1,...,yn] :!S →!T = Σ{fX1,y1 · . . . · fXn,yn | X = X1 + . . .+ Xn}



Fixed Point Operators

To interpret recursively defined functions we require a fixed point
operator for C! — a map sending f :!A→ A to fix(f ) :!1→ A such
that fix(f ) = fix(f )†; f .
It is uniform in ! if f ; h =!h; g implies fix(g) = fix(f ); h.

How can we obtain such a fixed point?

I CPO enrichment of C? — Only definable if the internal
semiring is continuous.

I Trace operator on C? — Only uniform (and adequate) if the
internal semiring is idempotent.

I A Bifree Algebra for the exponential ?
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Fixed Points from Bifree Algebras

A bifree algebra for ! : C → C is an object A with an isomorphism
α :!A ∼= A such that:

I α :!A→ A is an initial algebra for !.

I α−1 : A→!A is a final coalgebra for !.



Fixed Points from Bifree Algebras

Proposition[After Freyd (1990) and Simpson and Plotkin (200)] If
! : C → C has a bifree algebra Ψ then C! has a unique uniform fixed
point operator.

I id†!1 :!1→!!1 has a unique anamorphism ∞ :!1→ Ψ such that

∞;ψ−1 = id†!1; !∞ =∞†.
I Any f :!A→ A has a unique catamorphism ([f ]) : Ψ→ A such

that ψ; ([f ]) =!([f ]); f . Let fix(f ) :!1→ A =∞; ([f ])

I fix(f )†; f = (∞; ([f ]))†; f =∞†; !([f ]); f =∞;ψ−1;ψ; ([f ]) =
∞; ([f ) = fix(f ).

I Uniformity and uniqueness follow from uniqueness of
catamorphisms and anamorphisms.



The Bifree Algebra of Nested Finite Multisets

Theorem If C is a Lafont category with biproducts then C! has a
uniform fixed point operator.
Observe that the functor from RΠ

C to C sending S to
⊕

a∈S I
preserves cofree exponentials — i.e. !

⊕
a∈S I

∼=
⊕

a∈M∗(S) I

I Let M be the set of finite nested multisets — i.e.
M =

⋃
i∈NMi , where M0 = ∅ and Mi+1 =M∗(Mi ). Then

M∗(M) = M.

I Hence Ψ =
⊕

i∈M I =
⊕

i∈M∗(M) I and so !Ψ ∼= Ψ in C.

We show that this isomorphism is a bifree algebra for ! : C → C.



R-weighted λ-terms

Extend an applied λ-calculus (PCF) with:

I Erratic choice:

Γ`M :nat Γ`N :nat
Γ`M orN :nat

I “Scalar Weights” from a complete semiring R:

Γ`M :nat
Γ`a.M :nata ∈ R



Operational Semantics

Define a labelled transition system in which

I states are programs of PCFR (closed terms of ground type).

I labels are elements of {l , r}∗ × |R|.
I actions are as follows:

E [M orN]
l ,1−→ E [M] E [M orN]

r ,1−→ E [N]

E [a.M]
ε,a−→ E [M] E [M]

ε,1−→ E [M ′]

where M −→ M ′ is a PCF reduction.



Path Weights

For closed terms M,N and a path s ∈ {l , r}∗, define a weight in R:

I ws(M,N) = a1 · . . . · an if there exists a reduction

M
u1,a1−→ . . .

un,an−→ N such that s = u1 · . . . · un.

I ws(M,N) = 0, otherwise.

We evaluate M at n by taking the sum in R of path-weights:
W (M, n) = Σs∈{l ,r}∗ws(M, n).
Note that if M is strongly convergent (has no infinite reduction
paths) this is a finite sum by König’s Lemma.



Example
Let B = µx .1 or a.suc(x):

B
(ε,1)��

1 or a.suc(B)

(l ,1)yysss
sss

s (r ,1)

**UUU
UUUU

U

1 a.suc(B)
(ε,a)��

suc(B)
(ε,1)��

suc(1 or a.suc(B))

(l ,1)ttiiii
iiii

iiii
(r ,1)

**UUU
UUUU

U

2 suc(a.suc(B))
(ε,a)��

suc(suc(B))

(ε,1)��
...

W (M, n) = an−1 for n > 0.



Continuous Semirings

There are many computationally interesting examples of complete
semirings e.g.:

I complete lattices (security),

I positive reals, (R+ ∪∞,Σ,×, 1) (probability)

I tropical semirings —e.g.(N ∪∞, max,+, 0) (longest path).

The above are continuous semirings — they can be ordered so that
sum and product are continuous.



Non-continuous Semirings

Let (|R|,+, ·, 1) be any commutative semiring without (necessarily)
additive identity. Define a complete semiring
R∞0 = (|R| ] {0,∞},Σ, ·, 1), where:

I Σi∈Iai = 0 if IC0 , {i ∈ I | ai 6= 0} = ∅
I Σi∈Iai = Σi∈IC0

ai , if 0 < |IC0 | <∞ and {i ∈ I | ai =∞} = ∅.

I Σi∈Iai =∞, otherwise.

and a.∞ =∞.a = 0 if a = 0; a.∞ =∞.a =∞, otherwise.
This is not continuous in general — e.g. if R is finite.



Nested multiset approximants

To prove computational adequacy, we represent fixed points as sums
of approximants, indexed over M:

I We show that ∞ : I → Ψ = ΣX∈MιX (where
ιX : I →

⊕
X∈M I is the X th injection.

I Let f X : I →!A = ιX ; ([f ]).

Then fix(f ) = ΣX∈Mf X

Each X ∈M represents a unique forest of nested calls to f — i.e.
f [X1,...,Xk ] corresponds to k recursive calls to f at top level, which
make nested calls to f with call-patterns X1, . . . ,Xk and so on.



Computational Adequacy for PCFR

Theorem If C is a Lafont category with biproducts with R ⊆ RC ,
then for any program M

[[M]] = Σn∈N(W (M, n) · [[n]])

I Usual proof techniques (logical relations) depend on continuity.

I We use a translation into an equivalent operational semantics
which nondeterministically assigns an explicit multiplicity to
each variable — either a natural number or a nested multiset
(for recursively defined variables). — cf. the resource
λ-calculus.

I We define the denotational semantics of this system using our
semantic approximants to the fixed point.



Qualitative to Quantitative Models: Change of Base

Suppose F : V → U is a monoidal functor, with
mA,B : FA⊗ FB → F (A⊗ B) and mI : I → FI . Then for any
V-enriched category C, F induces a U-enriched category FC by
change of base:

I ObjFC = ObjC
I FC(A,B) = F (C(A,B))

I The identity and composition morphisms are
mI ; (F idA) : I → FC(A,B) and
mC(A,B),C(B,C); compA,B,C : FC(A,B)⊗ FC(B,C )→ C(A,C ).

Example — for any V, the functor V(I , ) : V → Set is monoidal —
for any V-category C, change of base along this functor gives the
underlying category C0.
Observe that F acts as a functor from C0 to (FC)0.



From Coherence Spaces to RΠ

Consider the (strict monoidal) “forgetful” functor ΦR from the
category of coherence spaces and stable, linear maps (cliques of
A( B) to RΠ:

I ΦR(|A|,¨) = |A|
I For f : A→ B, ΦR(f ) : |A| × |B| → R is the characteristic

function of R — ΦR(f )(a, b) = 1 if (a, b) ∈ R, 0 otherwise.

Note that stability is crucial for functoriality.



Coherence Enriched Categories

Many categories (hypercoherences, event structures, sequential
algorithms...) bear a natural enrichment over coherence spaces. For
example, games and history-free strategies (used by Abramsky and
McCusker to interpret Idealized Algol):

I Objects are games.

I G(A,B) is the set LA(B of complete (legal) sequences on
A( B, with s ¨ t if s u t is even-length.

I compA,B,C is the set of ((r , s), t) ∈ LA(B × LB(C × LB(C

such that there exists u with u�A( B = r , u�B ( C = s and
u�A( C = t,

Stability of composition is the Zipping Lemma.



R-weighted strategies

The underlying category ΦRG has games as objects, maps from A
to B are maps from LA(B to R.

I If R is the Boolean semiring ({>,⊥},
∨
,>,∧) then ΦRG is

the category of games and nondeterministic strategies

I If R is the probability semiring (R∞+ ,Σ, 1,×) then ΦRG is the
category of probabilistic games and pre-strategies (Danos and
Harmer).

I If R is the tropical semiring (N∞,
∨
, 0,+) then ΦRG is the

category of slot games (Ghica).



R-weighted Idealized Algol

I Change of base induces/preserves categorical structure on
games which we have used to define a categorical model of
Idealized Algol (in particular, a monoidal action
� : GS × G → GS of G on a subcategory GS , such that the free
! is a final coalgebra for J(A� )× I ).

I So we get a sound model of IAR , with meaning-preserving
functor from the qualitative model : computational adequacy
proved as for PCFR .

I Full abstraction follows easily from definability of the basis in
Idealized Algol, proved by Abramsky and McCusker.


