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Motivation

The theory of automata over infinite words is interesting

for model-checking
can model LTL, CTL, MSO, . . .

because of the word “infinite”
the mysteries of infinity
results are much less elementary than in the finite case

Motivating question

How much axiomatic strength is required to develop this theory?
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Büchi automata and MSO

Acceptance condition of Büchi automata

w ∈ ΣN accepted by A

⇔

∃ρ run of A over w with ρ(n) ∈ F for infinitely many n

Monadic Second-Order logic ≡ logic of order restricted to unary
predicates (read as sets)

Typical statement of this language:

“Y contains an infinite set” ≡ ∃X (X ⊆ Y ∧ ∀n ∃k (n ≤ k ∧ k ∈ X))
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Büchi’s theorem

Theorem [Büchi 62]
MSO(N,≤) is decidable.

The proof hinges on several automata constructions
recognizing the union of two recognizable languages for ∨
projections for ∃
complementation for ¬
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Complementation

The non-elementary step is complementation of Büchi automata.

There are two popular ways of accomplishing this

direct complementation
original solution by Büchi
uses the infinite Ramsey theorem (RT2

<∞)

go through determinization . . .
determinization itself is nontrivial
uses weak König’s lemma (WKL0)

Questions
is one of those “harder” than the other?
how to formalize it?
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Reverse Mathematics

A convenient framework to formalize these questions is given by
the programme of Reverse Mathematics.

Methodology

Study theorems of interest in weak subsystems of second-order
arithmetic (Z2)

Typical statements ressemble “Over RCA0. . .
Bolzano-Weierstrass theorem is equivalent to König’s
lemma (ACA0)”
Gödel’s completeness theorem is equivalent to WKL0”
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Subsystems of Z2

Typical subsystems of second-order arithmetic restrict the shape
of the formulae in

induction schemes

comprehension schemes
an arbitrary formula cannot be considered a second-order
object
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The base theory RCA0

We will be working with the weak theory RCA0.

RCA0 (recursive comprehension axiom) restricts Z2 to
Σ0

1-induction (Σ0
1-IND)

∆0
1-comprehension

Intuition

A Σ0
1 formula ϕ(n) corresponds to recursively enumerable sets
(relative to ϕ’s parameters)
hence ∆0

1 corresponds to decidability
RCA0’s minimal model is (ω,Dec)
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RT2
<∞ and WKL0 in Reverse Mathematics

As one might suspect, RT2
<∞ and WKL0 are nontrivial in this

framework

(ω,Dec) does not satisfy either RT2
<∞ or WKL0

over RCA0, WKL0 and RT2
<∞ are known to be incomparable

{ what is going on in Büchi’s theorem is not obvious

is determinization essentially harder than
complementation. . .
. . . or are RT2

<∞ and WKL0 an overkill?

THEY ARE
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Our main theorem

Theorem
Over RCA0, the following are equivalent:

decidability of MSO(N)1

complementing Büchi automata
Σ0

2-induction (Σ0
2-IND)

Moreover, each of the above imply soundness of determinization
1 Technically, of any fragment with fixed quantifier alternation ≥ 5.
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Comments

Moral

Σ0
2-IND characterizes the logical strength of Büchi’s theorem.

Σ0
2-IND is orthogonal to WKL0 and strictly weaker than

RT2
<∞

We can instantiate this result in any model of RCA0.
for instance, it means that MSO(ω,P(ω)) ≡ MSO(ω,Dec)

Σ0
2-IND seems to be a minimal prerequisite

If ϕ is ∆0
1, “There are finitely many n such that ϕ(n)” is Σ0

2

This is in stark contrast with the situation with tree automata
see How unprovable is Rabin’s decidability theorem?
(L. A. Kołodziejczyk, H. Michalewski, 2015)
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To sum up, over RCA0. . .
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Open questions

figure out whether determinization alone implies Σ0
2-IND

make sure Σ0
2-IND is enough to show the soundness of

other determinization procedures
we studied Muller-Schupp; Safra’s construction would be a
good target
another interesting target would be determinization in terms
of Wilke algebras

other problems concerning automata over infinite words
could be calibrated

the uniformization theorem
“for a given automaton A such that
∀X ∃Y (A accepts X ⊗ Y), there exists B such that
∀X ∃!Y (both A and B accept X ⊗ Y)”
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Thanks for your attention!
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