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Origins

G. Bana - H. Comon POST’12 computer security:

First-order language based on a “PPT computability” predicate t1, ..., tn B t to
reason about protocol security

Semantics
I t1, ..., tn, t are interpreted as probabilistic polynomial-time (PPT) algorithms accessing

an infinite random bit string ω

I t1, ..., tn B t intuitively: the output of t is PPT computable from the outputs of
t1, ..., tn except possibly for negligible probability

I Disjunction intuitively: t1, ..., tn B t ∨ t1, ..., tn B t′ holds if for certain ω’s t can be
computed (except maybe for negligible probability), for others t′.

I Negation intuitively: ¬t1, ..., tn B t holds if on no non-negligible set can t be computed
from t1, ..., tn.

I Existential quantifier is also non-standard, more complex

FOL deduction is sound with B-C non-Tarskian semantics (Hard!)
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Key: Fitting’s Embedding

Our semantics is a special case of Fitting’s embedding of classical logic in S4 (1970)
- a reformulation of Cohen’s forcing

Aim of this talk: Identify some general aspects in which Fitting’s embedding arises
naturally

Hence bring attention to Fitting’s embedding and its possible uses
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First Order Language and Structure

Consider a first-order language:
I f: a set of function symbols

I p: a set of predicate symbols

I X : a set of variables

I A(f,p,X ): atomic formulas built on (f, p,X )

I Φ(f,p,X ): the first order formulas built on (f, p,X ) with the same set of variables (with

∧, ∨, ¬, →, ∃, ∀, true, false)

First-order structure: Domain D together with interpretation I
I I assigns functions on D to function symbols
I I assigns relations on D to predicate symbols

let V denote the set of valuations of variables in D
I for V ∈ V, V : X → D.

Having fixed a V valuation, for any term t, the interpretation IV (t) ∈ D is defined
the usual way.
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Tarskian Semantics of First Order Formulas

Let w = (D, I ) be a first-order structure for (f, p,X ).
An atomic formula φ looks like p(t1, ..., tn) with p ∈ p and ti terms.

V ,w |= p(t1, ..., tn) ⇔ (IV (t1), ..., IV (tn)) ∈ I (p)

V ,w |= φ1 ∨ φ2 ⇔ V ,w |= φ1 ∨∨∨ V ,w |= φ2

V ,w |= φ1 ∧ φ2 ⇔ V ,w |= φ1 ∧∧∧ V ,w |= φ2

V ,w |= ¬φ ⇔ V ,w 6|= φ

V ,w |= φ→ ψ ⇔ (V ,w |= φ⇒ V ,w |= ψ)

V ,w |= ∃xφ[x ]
⇔ ∃∃∃V ′ ∈ V.(V ′ differs from V only on x ∧∧∧ V ′,w |= φ[x ])

V ,w |= ∀xφ[x ]
⇔ ∀∀∀V ′ ∈ V.(V ′ differs from V only on x ⇒ V ′,w |= φ[x ])
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Possible Worlds

Consider the following situation:

(f, p,X ) as before

Fix a single domain D

V: valuations as before

W : a set of possible worlds

Iw : an interpretation of f and p for each w ∈W (fixed on f but varying on p)

|=: Tarskian satisfaction relation on V ×W × Φ(f,p,X ) written as V ,w |= φ

Define V ,W |=C φ⇔ ∀∀∀w ∈W .(V ,w |= φ)
(C stands for “covering”)

Clearly, first order deduction rules are sound for |=C because if some deduction is
sound for |=, then it works for all w hence for |=C.
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Sets of Possible Worlds

|=C is not Tarski-semantics for W

|=C can equivalently be defined recursively the following way (let S ⊆W ):

I If φ ∈ A(f,p,X ), then V ,S |=C φ iff ∀∀∀w ∈W .(V ,w |= φ)

I V ,S |=C φ1 ∨ φ2 iff there are S1, S2 ⊆W such that S = S1 ∪ S2 and V , S1 |=C φ1 and
V ,S2 |=C φ2

I V ,S |=C ¬φ ⇔ ∀∀∀S ′ ⊆ S.
(
V ,S ′ 6|=C φ

)
I V ,S |=C φ1 → φ2 iff ∀∀∀S ′ ⊆ S , V , S ′ |=C φ1 implies V , S ′ |=C φ2

I V ,S |=C ∃xφ[x] iff ∃∃∃S ⊆ 2W such that S =
⋃

S′∈S S ′ and for all S ′ ∈ S, there is a

V ′ ∈ V differing from V only on x such that V ′, S ′ |=C φ[x]

I The semantics of ∧ and ∀ are the Tarskian ones.

Then V ,W |=C φ is the same as before
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S5 Connection

If we put an accessibility relation R ⊆W ×W on W such that wRw ′ iff w = w ′, then
W becomes an S5 Kripke structure. Define φ 7→ φ◦ as

For any atomic formula φ, let φ◦ ≡ �φ.

(φ1 ∨ φ2)◦ ≡ �(φ◦1 ∨ φ◦2 )

(¬φ)◦ ≡ �¬φ◦

(φ1 → φ2)◦ ≡ �(φ◦1 → φ◦2 )

(∃xφ)◦ ≡ �∃xφ◦

(φ1 ∧ φ2)◦ ≡ (φ◦1 ∧ φ◦2 )

(∀xφ)◦ ≡ ∀xφ◦

V ,W |=C φ iff V ,W |=K φ◦ where |=K is the usual Kripke-semantics.

V ,w |=K ♦φ⇔ ∃∃∃w ′.(wRw ′ ∧∧∧ V ,w ′ |= φ)

V ,w |=K �φ⇔ ∀∀∀w ′.(wRw ′ ⇒ V ,w ′ |= φ)

Easy embedding theorem: φ◦ is deducible in S5 iff φ is deducible in FOL

Hence soundness of first-order deduction for |=C can be viewed as a consequence of this
embedding theorem.
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Algebra of Sets of Possible Worlds

What if we are not interested in all subsets of W , but only some algebra L ⊆ 2W of
subsets (closed under finite union and complement)?

For example, when there is a probability measure on some σ-algebra of W .

We may still want similar definitions for S ∈ L:

V ,S |=′ φ1 ∨ φ2 iff there are S1, S2 ∈ L such that S = S1 ∪ S2 and V , S1 |=′ φ1 and
V , S2 |=′ φ2

V ,S |=′ ∃xφ[x ] iff ∃∃∃S ⊆ L such that S =
⋃

S′∈S S
′ and for all S ′ ∈ S, there is a

V ′ ∈ V differing from V only on x such that V ′,S ′ |=′ φ[x ]

First-order deduction rules are not sound if

[φ]V := {w ∈W |V ,w |= φ} ∈ L

is not guaranteed for all φ and V .
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Significant Sets, Insignificant Sets

Sometimes we are interested in properties that are allowed to fail on “insignificant”
sets

I Measure zero sets: (W ,Σ,m), S ∈ Σ, m(S) = 0

I Epsilon semantics for conditional logic: (W ,Σ,P1,P2, ...), S ∈ Σ, limi→∞ Pi (S) = 0

I Negligible probability in complexity theory: (W ,Σ,P1,P2, ...), S ∈ Σ,

∀∀∀m ∈ N. ∃∃∃i0 ∈ N. ∀∀∀i > i0.
1
im
> Pi (S)

Let’s distinguish significant and insignificant sets:
I L = Ls ∪ Li
I Li is a non-trivial ideal of L:

F if S ∈ Li, and S′ ∈ L, and S′ ⊆ S, then S′ ∈ Li;

F if S ∈ Li, and S′ ∈ Li, then then S ∪ S′ ∈ Li;

F Li 6= L.

Problems arise from that infinite unions of insignificant sets may be significant.
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An Example

Let (Ω,Σ,P) be a probability space

X , Y , U, V random variables

Ω |= X = Y ∨ U = V :

I X = Y holds almost everywhere on one part of Ω

I U = V holds almost everywhere on the rest of Ω

I E.g. The result of a coin toss is either Heads or Tails (lending on the edge has 0
probability)

I E.g. The result of casting a dice is either ≤ 5 or even.

I Not Tarskian examples, but they make perfect sense.

Ω |= X 6= Y

I No set S ⊆ Ω with non-zero probability such that X = Y on S

I E.g. The coin does not fall on its edge

Exist: If we roll a homogenous ball, there is an open hemisphere on which it stops
with non-zero probability, but there is no surface point on which it stops with
non-zero probability.

I We can cover Ω with significant sets on each of which there is a witness
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with non-zero probability, but there is no surface point on which it stops with
non-zero probability.

I We can cover Ω with significant sets on each of which there is a witness
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Covering Enough-Certainty Semantics

Let (D,W ,L,Ls, f, p,X , Iw ) be as before, define |=CEC on V × Ls × Φ(f,p,X )

If φ ∈ A(f,p,X ), then V , S |=CEC φ iff ∃∃∃S ′ ∈ Ls.(S \ S ′ ∈ Li ∧ V ,S ′ |=C φ).

V , S |=CEC φ1 ∨ φ2 ⇔ ∃∃∃S1,S2 ∈ Ls.
(
S \ (S1 ∪ S2) ∈ Li

∧∧∧ V ,S1 |=CEC φ1 ∧∧∧ V , S2 |=CEC φ2

)
V , S |=CEC ¬φ ⇔ ∀∀∀S ′ ∈ Ls.

(
S ′ ⊆ S ⇒ V , S ′ 6|=CEC φ

)
V , S |=CEC φ1 → φ2 ⇔ ∀∀∀S ′ ∈ Ls.

(
S ′ ⊆ S ∧∧∧ V , S ′ |=CEC φ1 ⇒ V , S ′ |=CEC φ2

)
V , S |=CEC ∃xφ[x]

⇔ ∃∃∃S ⊆ Ls.
(
S \
⋃

S′∈S S ′ ∈ Li ∧∧∧ ∀∀∀S ′ ∈ S.
(
∃∃∃V ′ ∈ V

differing from V only on x . (V ′,S ′ |=CEC φ[x])
))

The semantics of ∧ and ∀ are the usual ones.
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Two issues with ∃...
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The semantics of ∧ and ∀ are the usual ones.

First-order deduction is not sound.

Even if [φ]V := {w ∈W |V ,w |= φ} ∈ L, witnesses might exist only on insignificant sets,
so the soundness proof before does not work.
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Fitting Embedding

For any first-order formula φ, consider the transformation φ→ φ∗,

For any atomic formula φ, let φ∗ ≡ �♦φ.

(φ1 ∨ φ2)∗ ≡ �♦(φ∗1 ∨ φ∗2 )

(¬φ)∗ ≡ �¬φ∗

(φ1 → φ2)∗ ≡ �(φ∗1 → φ∗2 )

(∃xφ)∗ ≡ �♦∃xφ∗

(φ1 ∧ φ2)∗ ≡ (φ∗1 ∧ φ∗2 )

(∀xφ)∗ ≡ ∀xφ∗

We assume Barcan formulas: ∀x�φ↔ �∀xφ (single domain)
�♦ can be written everywhere, but it simplifies to the above

Theorem (Fitting’s Embedding, 1970)

Any formula φ is derivable in first-order logic if and only if φ∗ it is derivable in S4 with
the Barcan formulas.
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S4 structure of significant sets

Take (D,W ,L,Ls, f, p,X ) as before. Defining R ⊆ Ls ×Ls, SRS ′ ⇔ S ′ ⊆ S , we have a
transitive, reflexive accessibility relation, hence with ⊆, Ls is a S4 Kripke-structure.

Suppose for each S ∈ Ls, IS interprets f and p on D
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Fitting Twisted Enough-Certainty Semantics

We can define the relation |=FEC on V × Ls × Φ(f,p,X ) in the following way:

p(t1, ..., tn) ∈ A(f,p,X ), then V , S |=FEC φ

⇔ ∀∀∀S ′ ∈ Ls.
(
S ′ ⊆ S ⇒ ∃∃∃S ′′ ∈ Ls.

(
S ′′ ⊆ S ′ ∧∧∧ (IS′′

V (t1), ..., IS′′
V (tn)) ∈ IS′′

(p)
))

V , S |=FEC φ1 ∨ φ2 ⇔ ∀∀∀S ′ ∈ Ls.
(
S ′ ⊆ S ⇒ ∃∃∃S ′′ ∈ Ls.

(
S ′′ ⊆ S ′

∧∧∧ (V , S ′′ |=FEC φ1 ∨∨∨ V , S ′′ |=FEC φ2)
))

V , S |=FEC ¬φ⇔ ∀∀∀S ′ ∈ Ls.
(
S ′ ⊆ S ⇒ V ,S ′ 6|=FEC φ

)
V , S |=FEC φ→ ψ ⇔ ∀∀∀S ′ ∈ Ls.

(
S ′ ⊆ S ∧∧∧ V , S ′ |=FEC φ⇒ V , S ′ |=FEC ψ

)
V , S |=FEC ∃xφ[x] ⇔ ∀∀∀S ′ ∈ Ls.

(
S ′ ⊆ S

⇒ ∃∃∃S ′′ ∈ Ls.
(
S ′′ ⊆ S ′ ∧∧∧ (∃∃∃V ′ ∈ V

differing from V only on x . (V ′, S ′′ |=FEC φ[x]))
))

The semantics of ∧ and ∀ are the usual ones.

V , S |=FEC φ⇔ V ,S |=K φ∗

Since by Fitting, first-order deduction is sound for V ,S |=K φ∗, it is also sound for
V , S |=FEC φ.
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Fitting and Covering

Compare

V , S |=CEC φ1 ∨ φ2

⇔ ∃∃∃S1, S2 ∈ Ls.
(
S \ (S1 ∪ S2) ∈ Li ∧∧∧ V ,S1 |=CEC φ1 ∧∧∧ V , S2 |=CEC φ2

)
V , S |=FEC φ1 ∨ φ2 ⇔ ∀∀∀S ′ ∈ Ls.

(
S ′ ⊆ S ⇒ ∃∃∃S ′′ ∈ Ls.

(
S ′′ ⊆ S ′

∧∧∧ (V , S ′′ |=FEC φ1 ∨∨∨ V ,S ′′ |=FEC φ2)
))
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Covering Is Sometimes Fitting

Theorem

Let (D,W ,L,Ls, f, p,X , Iw ) be as before. Let card(D) denote the cardinality of D. If
[φ]V := {w : V ,w |= φ} ∈ L for φ ∈ A(f,p,X ) and valuation V of variables in φ, and if L
is closed under taking unions of as many of its subsets as the cardinality card(D), then
covering enough-certainty semantics is a special case of Fitting twisted enough-certainty
semantics.

Conditions of the theorem are satisfied: can use CEC

Conditions of the theorem are not satisfied: use FEC - which is what we did for
computability.
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Applications

Computer security: properties allowed to fail on negligible sets

Conditional logic - default logic

I Conditional implication |→ for something to hold “typically”

I Various ways in the literature to give a semantics for |→
I We can define a semantics that satisfies usual desired properties

F KLM axioms, satisfiability of Lottery and Crooked Lottery paradoxes

I Our |→ turns into material implication when atypical sets are insignificant as a result
of the Fitting twist

Gergei Bana (INRIA) Enough Certainty Marseille, Sep 2016 18 / 21



Applications

Computer security: properties allowed to fail on negligible sets

Conditional logic - default logic

I Conditional implication |→ for something to hold “typically”

I Various ways in the literature to give a semantics for |→
I We can define a semantics that satisfies usual desired properties

F KLM axioms, satisfiability of Lottery and Crooked Lottery paradoxes

I Our |→ turns into material implication when atypical sets are insignificant as a result
of the Fitting twist

Gergei Bana (INRIA) Enough Certainty Marseille, Sep 2016 18 / 21



Computability Predicate 1

What should be the computational semantics of t1, ..., tn B t?

Possible worlds: W = {(1η, ω)|ω infinite random bit string}. For each fixed η, we
have a probability distribution Pη on W .

D: set of probabilistic polynomial-time algorithms with input (1η, ω)

Significant sets: Non-negligible measurable subsets of W
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Computability Predicate 2

V , S |c= t1, ..., tn B t?

First try: There is a PPT A such that A(t1(1η, ω), ..., tn(1η, ω), ω) = t(1η, ω) for
almost all (1η, ω) ∈W

I No: For ¬t1, ..., tn B t, we want: there is no S non-negligible subset on which such an
A exist. - Let’s fix this.

Second try: There is a non-negligible set S and a PPT A such that
A(t1(1η, ω), ..., tn(1η, ω), ω) = t(1η, ω) for all (1η, ω) ∈ S .

I No: Has bad properties: t1, ..., tn B t ∧ t1, ..., tn B t′ would not imply t1, ..., tn B (t, t′)
because sets on which t is computable and on which t′ is computable might be disjoint

Third try: There is a set of non-negligible sets S such that
⋃

S∈S S almost covers W
and for each S ∈ S, there is a PPT AS such that
AS(t1(1η, ω), ..., tn(1η, ω), ω) = t(1η, ω) for all (1η, ω) ∈ S .

I No: Still t1, ..., tn B t ∧ t1, ..., tn B t′ would not imply t1, ..., tn B (t, t′) because the sets
on which t is computed and the sets on which t′ is computed may have only negligible
intersections.

Fourth try: For any non-negligible set S , there is a set of non-negligible sets S such
that

⋃
S′∈S S

′ almost covers S and for each S ′ ∈ S, there is a PPT AS′ such that
AS′(t1(1η, ω), ..., tn(1η, ω), ω) = t(1η, ω) for all (1η, ω) ∈ S ′.

Simplify: For any non-negligible set S , there is an S ′ non-negligible subset of S and
a PPT AS′ such that AS′(t1(1η, ω), ..., tn(1η, ω), ω) = t(1η, ω) for all (1η, ω) ∈ S .
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Conclusions

Generic framework for satisfiability with exception of insignificant sets

Showed how Fitting’s embedding can help with reasoning about properties that are
allowed to fail on insignificant sets of possible worlds.

Proved a theorem about when ”Fitting-twisted enough-certainty” semantics agrees with
”covering enough-certainty” semantics

Indicated some applications

Showed how Fitting’s embedding arises naturally for computability.

For future:

We are exploring more the applicability for conditional logic

Other applications?
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