
Extracting non-deterministic concurrent programs

Ulrich Berger
Swansea University

CSL 2016

August 30, Marseille

1 / 22

Overview

Non-deterministic and concurrent extensions of functional
programming languages have been intensively studied.

The aim of this talk is to show that programs in such languages
can be specified and extracted from proofs using realizability.

The crucial novelty is a modality permitting non-deterministic
concurrent realizers and a semi-constructive Disjunction Principle.

As a concrete example we extract a non-deterministic concurrent
program that translates Tsuiki’s infinite Gray-code for real
numbers to the signed digit representation.

2 / 22

Formal framework

I Intuitionistic many-sorted logic in finite types.

I Sorts represent abstract mathematical structures given by
∨-free axioms.

I Inductive and coinductive definitions of predicates as least and
greatest fixed points of monotone predicate transformers.

I Realizers are untyped recursive programs.

I The definition of realizability is usual except that quantifiers
are interpreted uniformly:

I a r ∃x A(x) means ∃x (a rA(x)).
I a r ∀x A(x) means ∀x (a rA(x)).

3 / 22

Real, natural and rational numbers

The structure of the real numbers R = (0, 1,+, ∗,−, /,<, | · |) is
treated as a sort specified by ∨-free axioms.

The natural numbers are defined as the least subset of R that
contains 0 and is closed under successor:

N µ
= { 0 } ∪ { x + 1 | x ∈ N }

Realizability automatically associates with this definition the unary
representation of natural numbers and with proofs of closure
properties of N programs operating on that representation.

Q := { p ∗ m

n
| p ∈ {−1, 1},m, n ∈ N, n 6= 0 } ⊆ R

4 / 22

Cauchy- and Signed-Digit-representation

A Cauchy representation of a real number x ∈ I = [−1, 1] ⊆ R is
a sequence f : N→ Q such that for all n ∈ N

|x − f (n)| ≤ 2−n

A signed digit representation of a real number x ∈ I is a stream
d0 : d1 : . . . ∈ SDω, where SD = {−1, 0, 1}, such that

x =
∑
i∈N

di ∗ 2−(i+1)

5 / 22

Gray code

Gray code (named after Frank Gray in 1946 who called it
“reflected binary code”) is an alternative to the binary
representation of natural numbers where neighbouring numbers
differ in only one digit.

Tsuiki extended this to a representation of real numbers.

Hideki Tsuiki: Real Number Computation through Gray Code
Embedding. TCS 284, 2002.

(Dagstuhl seminar Mathematical Structures for Computable
Topology and Geometry, May 2002)

6 / 22

Tsuiki’s partial Gray code for real numbers

The Gray code or Gray representation of x ∈ [−1, 1] is the
itinerary of the tent map t(x) = 1− 2|x |. This means that the
n-th digit is 0 resp. 1 if tn(x) < 0 resp. > 0.

If tn(x) = 0, then the n-th digit is undefined.

Remarkably, every real in [−1, 1] has a unique Gray code.

One easily sees that at most one digit of the Gray code can be
undefined. Therefore, computation with the Gray code can be
modeled by a Two-Head-Turing-Machine.

Such a machine cannot be extracted from a proof in the current
system since it exhibits a kind of parallelism, or rather concurrency,
that is absent in extracted programs.

Problem: Devise a logic that can extract concurrent programs.

7 / 22

Related work: Realizing Gray Code deterministically

B., Kenji Miyamoto, Helmut Schwichtenberg, Hideki Tsuiki: Logic for

Gray-code computation (submitted)

gives a realizability interpretation and Minlog implementation of an
intensional version of Gray Code, called pre-Gray code, using a
conventional constructive system and conventional program
extraction. This skirts the issue of concurrency at the price of
giving up the uniqueness of Gray code.

This approach is currently being extended to pre-Gray code for
compact sets by Dieter Spreen and Hideki Tsuiki.

In this talk we dive headlong into concurrency. The results that
follow are not published yet, but exist as a draft paper.

8 / 22

Representations in logical form

We call a predicate A(x) a

Φ-representation in logical form

where Φ is a notion of representation, for example ’Cauchy’,
’Signed digit’ or ’Gray’, if for all x ∈ I and potential realizers a

a rA(x) iff a is is an Φ-representation of x

I.o.w. the realizers of A(x) are exactly the Φ-representations of x .

9 / 22

Three representations of real numbers in logical form

Cauchy representation

A(x) := ∀n ∈ N∃q ∈ Q ∩ I . |x − q| ≤ 2−n

Signed Digit representation

C(x)
ν
= ∃d ∈ SD . x ∈ Id ∧ C(2x − d)

where Id := [d/2− 1/2, d/2 + 1/2] and
ν
= means ’largest’.

Gray code

G(x)
ν
= D(x) ∧G(t(x))

where D(x) := x 6= 0→ x ≤ 0 ∨ x ≥ 0.

We want to show constructively A = C = G which will give us
programs translating between the three representations.

We will show A ⊆ G ⊆ C ⊆ A.
Since the last inclusion is straightforward, we omit it.

10 / 22

Proving A ⊆ G

To prove A ⊆ G one seems to need the following semi-constructive
principles:

(AP) ∀x . (∀n ∈ N |x | ≤ 2−n)→ x = 0
(Archimedean Property).

(ACω) (∀n ∈ N ∃q ∈ QA(n, q))→ ∃f : N→ Q∀n ∈ NA(n, f (n))
(countable choice for rational numbers).

(MP) (∀n ∈ N .A(n) ∨ ¬A(n)) ∧ (¬¬∃n ∈ NA(n))→ ∃n ∈ NA(n)
(Markov’s Principle)

AP has a trivial realizer, ACω is realized by the identity,
MP is realized by unbounded search.

11 / 22

Proving G ⊆ C

The only really hard part of the proof is to determine the first
signed digit of an x ∈ G, that is, to show

If x ∈ G, then x ∈ Id for some d ∈ SD.

For this we use the following Disjunction Principle:

(DP) (A
P
∨ B) ∧ (P

Q
∨ C)→ (A ∨ B) ∨ C

where

A
P
∨ B := (P → A ∨ B) ∧ (¬P → A ∧ B)

and A,B,C ,P,Q range over propositions without computational
content.

12 / 22

Concurrent Fixed Point Logic

DP is classically trivial, but constructively invalid, in particular not
realizable.

Hence the proof of the Lemma doesn’t yield an algorithm to
compute the first signed digit of an x ∈ G.

Concurrent Fixed Point Logic (CFP) comes to our rescue.

We add a modal operator S and the rules

Γ ` A

Γ ` S(A)
(S+)

Γ ` S(A) Γ,A ` S(B)

Γ ` S(B)
(S−)

13 / 22

Realizing S(A)

Intuitively, a realizer of S(A) is a partial family a, indexed by some
discrete set I, such that

(i) a(i) yields a result for at least one i ∈ I,

(ii) for any i ∈ I, if a(i) yields a result b, then b realizes A.

The formal definition uses a binary constructor Amb representing
nondeterministic choice between two alternatives.

Condition (i) is captured by an inductive definition,

condition (ii) by a coinductive definition.

14 / 22

Embedding IFP

To each IFP formula A we assign a CFP formula AS by applying
to each disjunctive and existential subformula the modality S.

Theorem (Embedding)

If Γ `IFP A, then ΓS `CFP AS.

Theorem (Soundness for CFP)

From a proof in CFP of ∆, Γ ` A, where ∆ consists of nc
formulas, one can extract a concurrent program term M such that
∆,~a r Γ ` (M ~a) rA.

Theorem (Concurrent Soundness)

From a proof of ∆, Γ `IFP A, where ∆ is nc, one can extract a
concurrent program M such that ∆,~a r ΓS ` (M ·~a) rAS.

15 / 22

Concurrently realizing the Disjunction Principle

Note that DPS is (equivalent to)

(A
P
∨ B)S ∧ (P

Q
∨ C)S → S(A ∨ B ∨ C)

where

(A
P
∨ B)S = (P → S(A ∨ B)) ∧ (¬P → A ∧ B),

(P
Q
∨ C)S = (Q → S(P ∨ C)) ∧ (¬Q → P ∧ C)

The following function realizes DPS

fDP (0,b) = -1

fDP (1,b) = 1

fDP (a,1) = 0

These equation must be interpreted as nondeterministic rewrite
rules.

16 / 22

Extracted programs for Gray code

Lemma 6. If x ∈ G, then x ∈ Id for some d ∈ SD.

f6 (a:b:s) = fDP(a,b)

Lemma 7.

(a) If x ∈ G, then −x ∈ G.

(b) If x ∈ G, then |x | ∈ G.

f7a (a:s) = swap a : s (swap 0 = 1, swap 1 = 0)

f7b (a:s) = 1:s

17 / 22

Extracted programs for Gray code ctd.

Lemma 8. If 0 ≤ x ≤ 1 and G(x), then G(2x − 1).

f8 (a:s) = f7a s

hence

f8 (a:b:s) = swap b : s

Lemma 9. If −1 ≤ x ≤ 0 and G(x), then G(2x + 1).

f9 (a:s) = s

18 / 22

Extracted programs for Gray code ctd.

Lemma 10. If 0 ≤ x ≤ 1 and G(x), then G(1− x).

f10 (a:s) = 1 : f8(a:s)

Hence

f10 (a:b:s) = 1 : swap b : s

Lemma 11. If −1
2 ≤ x ≤ 1

2 and G(x), then G(2x).

f11 (a:s) = a : f9(f10 s)

Hence

f11 (a:b:c:s) = a : swap c : s

19 / 22

Extracted programs for Gray code ctd.

Lemma 12. G ⊆ C.

f12 s = let { d = f9 s}

in d : case d of { -1 -> f12(f9 s) ;

0 -> f12(f11 s) ;

1 -> f12(f8 s) }

Hence

f12 (0:s) = -1 : f12 s

f15 (1:a:s) = 1 : f12 (swap a : s)

f15 (a:1:c:s) = 0 : f12 (a : swap c : s)

Again, read the equations above as overlapping rewrite rules.

f12 is exactly Tsuiki’s programgtos translating signed digit into to
Gray code.

20 / 22

Nondeterminism in Exact Real Number Computation

I Computing with the interval domain as a model of real
numbers appears to require a parallel (rather nondeterministic)
if-then-else operation (Potts, Edalat, Escardo, 1997).

I In fact, this nondeterminism is unavoidable (Escardo,
Hofmann, Streicher, 2004).

I Computing with TTE representations (e.g. Cauchy- or signed
digit representation) does not require nondeterminism.

I Gray code (though very similar to signed digits) requires
nondeterminism.

21 / 22

Next steps (j.w.w. Hideki Tsuiki)

I Replace the Disjunction Principle by a more fundamental
axiom.
Current solution: Generalise S(A) to (A | B) (read
“nondetermistically A if B, hence S(A) = (A | True)), and
replace the Disjunction Principle by nondeterministic
elimination for classical disjunction

(C | A)→ (C | B)→ (C | ¬(¬A ∧ ¬B))

which is realized by Amb.

I Extract Tsuiki’s program translating the signed digit
representation into Gray code:

stog (-1:s) = 0 : stog s

stog (1:s) = 1 : nh(stog s) -- nh(a:s) = (1-a):s

stog (0:s) = a : 1 : nh t where a : t = stog s

22 / 22

