
Context-Free
Graph Properties

via Definable
Decompositions

Michael Elberfeld
(paper author)

Kord Eickmeyer
(gives talk)

Beyond Monadic
Second-Order Logic

Our Logic:
Decomposition
MSO

Aspect I:
Formal languages

Aspect II:
Model Theory

Aspect III:
Algorithm Design

Conclusion

Context-Free Graph Properties
via Definable Decompositions

Michael Elberfeld (paper author)

Kord Eickmeyer (gives talk)

RWTH Aachen University

CSL 2016

Marseille, 30 August, 2016

1 / 14

Context-Free
Graph Properties

via Definable
Decompositions

Michael Elberfeld
(paper author)

Kord Eickmeyer
(gives talk)

Beyond Monadic
Second-Order Logic

Our Logic:
Decomposition
MSO

Aspect I:
Formal languages

Aspect II:
Model Theory

Aspect III:
Algorithm Design

Conclusion

MSO-logic is used outside model theory.

Monadic second-order (MSO) logic

Syntax ϕ quantifies sets ∃X ⊆ U besides ∃ x ∈ U,
Semantics defines property {finite structure A | A |= ϕ}.

Strings of even length are MSO-definable

Language L = {an | n is even} is MSO-definable since
Property STRUCTURE(L) = { , , . . . } is

MSO-definable via guess-and-check coloring.

Language-Theoretic Fact
Regular languages are MSO-definable, and vice versa.

[Büchi, 1960, Elgot, 1961, Trakhtenbrot, 1961]

2 / 14

Context-Free
Graph Properties

via Definable
Decompositions

Michael Elberfeld
(paper author)

Kord Eickmeyer
(gives talk)

Beyond Monadic
Second-Order Logic

Our Logic:
Decomposition
MSO

Aspect I:
Formal languages

Aspect II:
Model Theory

Aspect III:
Algorithm Design

Conclusion

MSO-logic is used outside model theory.

Monadic second-order (MSO) logic

Syntax ϕ quantifies sets ∃X ⊆ U besides ∃ x ∈ U,
Semantics defines property {finite structure A | A |= ϕ}.

Strings of even length are MSO-definable

Language L = {an | n is even} is MSO-definable since
Property STRUCTURE(L) = { , , . . . } is

MSO-definable via guess-and-check coloring.

Language-Theoretic Fact
Regular languages are MSO-definable, and vice versa.

[Büchi, 1960, Elgot, 1961, Trakhtenbrot, 1961]

2 / 14

Context-Free
Graph Properties

via Definable
Decompositions

Michael Elberfeld
(paper author)

Kord Eickmeyer
(gives talk)

Beyond Monadic
Second-Order Logic

Our Logic:
Decomposition
MSO

Aspect I:
Formal languages

Aspect II:
Model Theory

Aspect III:
Algorithm Design

Conclusion

MSO-logic is used outside model theory.

Monadic second-order (MSO) logic

Syntax ϕ quantifies sets ∃X ⊆ U besides ∃ x ∈ U,
Semantics defines property {finite structure A | A |= ϕ}.

3-colorable graphs are MSO-definable
We have |= ϕ, but 6|= ϕ with MSO-formula

ϕ = ∃R,G,B ⊆ U
∀ v ∈ U

[
v ∈ R ∨ v ∈ G ∨ v ∈ B

]
∧

∀ (v ,w) ∈ E ¬
[

v ,w ∈ R ∨ v ,w ∈ G ∨ v ,w ∈ B
]

Algorithmic Fact
Each MSO-definable property is solvable in linear time
on structures with bounded tree width. [Courcelle, 1990]

2 / 14

Context-Free
Graph Properties

via Definable
Decompositions

Michael Elberfeld
(paper author)

Kord Eickmeyer
(gives talk)

Beyond Monadic
Second-Order Logic

Our Logic:
Decomposition
MSO

Aspect I:
Formal languages

Aspect II:
Model Theory

Aspect III:
Algorithm Design

Conclusion

Second-order logic is too general.

Second-order (SO) logic

Syntax ϕ uses higher-ary quantifiers ∃X ⊆ U × U,
Semantics defines property {finite structure A | A |= ϕ}.

Complexity Fact
The SO-definable properties of strings are the problems
of the polynomial hierarchy (PH). [Stockmeyer, 1976]

SO’s expressivity and complexity
Since P ⊆ NP ⊆ PH ⊆ PSPACE,

• SO-definable properties are far beyond regular and
context-free, and

• modest polynomial runtimes are out of reach.

3 / 14

Context-Free
Graph Properties

via Definable
Decompositions

Michael Elberfeld
(paper author)

Kord Eickmeyer
(gives talk)

Beyond Monadic
Second-Order Logic

Our Logic:
Decomposition
MSO

Aspect I:
Formal languages

Aspect II:
Model Theory

Aspect III:
Algorithm Design

Conclusion

A matching relation contains nested tuples.

String structures with matchings

Structure (S,M) = representing
s = 10101111 and well-formed m = (()())().

The logic “∃ Match MSO” for string structures

Syntax ψ = ∃matching M
[
ϕ
]

with MSO-formula ϕ.
Semantics String structure S |= ψ if

(S,M) |= ϕ for a matching M of S.

Language-Theoretic Fact
The “∃ Match MSO”-definable properties of strings are
the context-free languages.

[Lautemann, Schwentick, and Thérien, 1995]

4 / 14

Context-Free
Graph Properties

via Definable
Decompositions

Michael Elberfeld
(paper author)

Kord Eickmeyer
(gives talk)

Beyond Monadic
Second-Order Logic

Our Logic:
Decomposition
MSO

Aspect I:
Formal languages

Aspect II:
Model Theory

Aspect III:
Algorithm Design

Conclusion

Paper generalizes from strings to graphs.

Research question
“a more general study of these logics will prove
worthwhile in the context of general finite structures,
instead of strings.”

[Lautemann, Schwentick, and Thérien, 1995]

Paper’s contribution
A logic for structures with bounded tree width along with
understanding the following aspects:

languages Its equivalence to context-free languages.
model theory Its expressive power.

algorithms Its satisfiability and evaluation problems.

5 / 14

Context-Free
Graph Properties

via Definable
Decompositions

Michael Elberfeld
(paper author)

Kord Eickmeyer
(gives talk)

Beyond Monadic
Second-Order Logic

Our Logic:
Decomposition
MSO

Aspect I:
Formal languages

Aspect II:
Model Theory

Aspect III:
Algorithm Design

Conclusion

We use decompositions of bounded width.

graph G tree decomposition D

Properties of our tree decompositions

Connected For every vertex, its bags are connected.
Covering Bags cover all edges

Strictness Subtrees cover ever “smaller” subgraphs.
Normal Subtrees cover connected subgraphs.

6 / 14

Context-Free
Graph Properties

via Definable
Decompositions

Michael Elberfeld
(paper author)

Kord Eickmeyer
(gives talk)

Beyond Monadic
Second-Order Logic

Our Logic:
Decomposition
MSO

Aspect I:
Formal languages

Aspect II:
Model Theory

Aspect III:
Algorithm Design

Conclusion

We use decompositions of bounded width.

graph G tree decomposition D

Width of tree decompositions
width(D) = maximum bag size −1.

Graphs with width-bounded decompositions

• Paths and trees have width-1 decompositions,
• Series-parallel graphs have width-2 decompositions.

6 / 14

Context-Free
Graph Properties

via Definable
Decompositions

Michael Elberfeld
(paper author)

Kord Eickmeyer
(gives talk)

Beyond Monadic
Second-Order Logic

Our Logic:
Decomposition
MSO

Aspect I:
Formal languages

Aspect II:
Model Theory

Aspect III:
Algorithm Design

Conclusion

Different tree decompositions are possible.

Flexibility of tree decompositions

• Many width-optimal decompositions exist in general.
• More apparent with a slightly higher width.

Width-3 decompositions of a string structure
string structure S

decomposition D1 decomposition D2 . . .

7 / 14

Context-Free
Graph Properties

via Definable
Decompositions

Michael Elberfeld
(paper author)

Kord Eickmeyer
(gives talk)

Beyond Monadic
Second-Order Logic

Our Logic:
Decomposition
MSO

Aspect I:
Formal languages

Aspect II:
Model Theory

Aspect III:
Algorithm Design

Conclusion

Our logic adds quantifying decompositions.

Structures expanded by decompositions
Combining string structure S and decomposition D into a
structure like (S,D) =

Decomposition MSO (DMSO) for structures

Syntax ψ = ∃width≤w D
[
ϕ
]

with MSO ϕ and w ∈ N.
Semantics A |= ψ if (A,D) |= ϕ for a width-w tree

decomposition D of A.

8 / 14

Context-Free
Graph Properties

via Definable
Decompositions

Michael Elberfeld
(paper author)

Kord Eickmeyer
(gives talk)

Beyond Monadic
Second-Order Logic

Our Logic:
Decomposition
MSO

Aspect I:
Formal languages

Aspect II:
Model Theory

Aspect III:
Algorithm Design

Conclusion

DMSO on strings captures context-freeness.

Theorem
The DMSO-definable properties of strings are the
context-free languages.

Proof relates matchings and decompositions.

• Define CFLs in terms of “∃ Match MSO”-logic.

• From |= ϕ to |= ϕ′.

• From (S,D) |= ϕ′ to (S,M) |= ϕ.

9 / 14

Context-Free
Graph Properties

via Definable
Decompositions

Michael Elberfeld
(paper author)

Kord Eickmeyer
(gives talk)

Beyond Monadic
Second-Order Logic

Our Logic:
Decomposition
MSO

Aspect I:
Formal languages

Aspect II:
Model Theory

Aspect III:
Algorithm Design

Conclusion

Higher width means higher expressivity.

Recall: Syntax of DMSO-logic
DMSO-formulas are ψ = ∃width≤w D

[
ϕ
]

with width w ∈ N

Theorem
For every w ≥ 3 and w ′ ≤ w − 2, formulas with width w
are more expressive than formulas with width w ′.

Proving subset and not-equal relation.

“⊆” • Width-w cover width-w ′ decompositions.
• Restricting to width-w ′ is MSO-definable.

“ 6=” • Width w = 4 allows to define subdivided stars
with 4 paths of equal length like , but

• is not possible with w = 2
(via Ehrenfeucht-Fraı̈ssé games).

10 / 14

Context-Free
Graph Properties

via Definable
Decompositions

Michael Elberfeld
(paper author)

Kord Eickmeyer
(gives talk)

Beyond Monadic
Second-Order Logic

Our Logic:
Decomposition
MSO

Aspect I:
Formal languages

Aspect II:
Model Theory

Aspect III:
Algorithm Design

Conclusion

Satisfiability for DMSO-formulas is decidable.

Theorem
Testing whether a given DMSO-formula
ψ = ∃width≤w D

[
ϕ
]

has an A with A |= ψ is decidable.

Proof is based on Seese’s Theorem.

• To test if there is A with A |= ψ, we
test if there is A and width-w D with (A,D) |= ϕ.

• Expansion (A,D) has tree width at most w + 2.
• Thus, satisfiability for subformula ϕ is decidable

[Seese, 1991].
• In turn, satisfiability for formula ψ is decidable.

11 / 14

Context-Free
Graph Properties

via Definable
Decompositions

Michael Elberfeld
(paper author)

Kord Eickmeyer
(gives talk)

Beyond Monadic
Second-Order Logic

Our Logic:
Decomposition
MSO

Aspect I:
Formal languages

Aspect II:
Model Theory

Aspect III:
Algorithm Design

Conclusion

Model Checking DMSO-formulas in PTIME.

Theorem
Each DMSO-definable property is decidable in
polynomial time.

Proof is based on dynamic programming.

• Let ψ = ∃width≤w D
[
ϕ
]

be a formula for the property.
• We only need to look at width-w decompositions.

recursion Try all root bags and all ways of extending it.
Strictness implies exponential time.

dynamic Bottom-up evaluation of recursive calls.
Normal condition implies polynomial time.

12 / 14

Context-Free
Graph Properties

via Definable
Decompositions

Michael Elberfeld
(paper author)

Kord Eickmeyer
(gives talk)

Beyond Monadic
Second-Order Logic

Our Logic:
Decomposition
MSO

Aspect I:
Formal languages

Aspect II:
Model Theory

Aspect III:
Algorithm Design

Conclusion

Conclusion

Summary

• DMSO-logic is proposed to capture the notion of
context-freeness for graphs.

• Basic expressibility and closure results.
• Satisfiability is decidable, model checking in PTIME.

Outlook

• Compare DMSO-logic to grammar-based notions of
context-freeness for graphs?

• Model checking . . .
. . . fixed-parameter tractable with parameter |ψ|?
. . . in LOGCFL ⊆ NC2 ⊆ PTIME for each fixed ψ?

13 / 14

Context-Free
Graph Properties

via Definable
Decompositions

Michael Elberfeld
(paper author)

Kord Eickmeyer
(gives talk)

References

References I

Büchi, J. R. (1960).
Weak second-order arithmetic and finite automata.
Math. Logic Quart., 6(1–6):66–92.

Courcelle, B. (1990).
Graph rewriting: An algebraic and logic approach.
In Handbook of Theoretical Computer Science,
Volume B, pages 193–242. Elsevier and MIT Press.

Elgot, C. C. (1961).
Decision problems of finite automata design and
related arithmetics.
Transactions of the American Mathematical Society,
98(1):21–51.

13 / 14

Context-Free
Graph Properties

via Definable
Decompositions

Michael Elberfeld
(paper author)

Kord Eickmeyer
(gives talk)

References

References II

Seese, D. (1991).
The structure of the models of decidable monadic
theories of graphs.
Annals of pure and applied logic, 53(2):169–195.

Stockmeyer, L. J. (1976).
The polynomial-time hierarchy.
Theoretical Computer Science, 3(1):1 – 22.

Trakhtenbrot, B. A. (1961).
Finite automata and logic of monadic predicates.
Doklady Akademii Nauk SSSR, 140:326–329.
In Russian.

14 / 14

	Our Logic: Decomposition MSO
	Aspect I: Formal languages
	Aspect II: Model Theory
	Aspect III: Algorithm Design
	Conclusion
	Appendix
	References

