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MSO-logic is used outside model theory.

Monadic second-order (MSO) logic

Syntax ϕ quantifies sets ∃X ⊆ U besides ∃ x ∈ U,
Semantics defines property {finite structure A | A |= ϕ}.

Strings of even length are MSO-definable

Language L = {an | n is even} is MSO-definable since
Property STRUCTURE(L) = { , , . . . } is

MSO-definable via guess-and-check coloring.

Language-Theoretic Fact
Regular languages are MSO-definable, and vice versa.

[Büchi, 1960, Elgot, 1961, Trakhtenbrot, 1961]
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MSO-logic is used outside model theory.

Monadic second-order (MSO) logic

Syntax ϕ quantifies sets ∃X ⊆ U besides ∃ x ∈ U,
Semantics defines property {finite structure A | A |= ϕ}.

3-colorable graphs are MSO-definable
We have |= ϕ, but 6|= ϕ with MSO-formula

ϕ = ∃R,G,B ⊆ U
∀ v ∈ U

[
v ∈ R ∨ v ∈ G ∨ v ∈ B

]
∧

∀ (v ,w) ∈ E ¬
[

v ,w ∈ R ∨ v ,w ∈ G ∨ v ,w ∈ B
]

Algorithmic Fact
Each MSO-definable property is solvable in linear time
on structures with bounded tree width. [Courcelle, 1990]
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Second-order logic is too general.

Second-order (SO) logic

Syntax ϕ uses higher-ary quantifiers ∃X ⊆ U × U,
Semantics defines property {finite structure A | A |= ϕ}.

Complexity Fact
The SO-definable properties of strings are the problems
of the polynomial hierarchy (PH). [Stockmeyer, 1976]

SO’s expressivity and complexity
Since P ⊆ NP ⊆ PH ⊆ PSPACE,

• SO-definable properties are far beyond regular and
context-free, and

• modest polynomial runtimes are out of reach.
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A matching relation contains nested tuples.

String structures with matchings

Structure (S,M) = representing
s = 10101111 and well-formed m = (()())().

The logic “∃ Match MSO” for string structures

Syntax ψ = ∃matching M
[
ϕ
]

with MSO-formula ϕ.
Semantics String structure S |= ψ if

(S,M) |= ϕ for a matching M of S.

Language-Theoretic Fact
The “∃ Match MSO”-definable properties of strings are
the context-free languages.

[Lautemann, Schwentick, and Thérien, 1995]
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Paper generalizes from strings to graphs.

Research question
“a more general study of these logics will prove
worthwhile in the context of general finite structures,
instead of strings.”

[Lautemann, Schwentick, and Thérien, 1995]

Paper’s contribution
A logic for structures with bounded tree width along with
understanding the following aspects:

languages Its equivalence to context-free languages.
model theory Its expressive power.

algorithms Its satisfiability and evaluation problems.
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We use decompositions of bounded width.

graph G tree decomposition D

Properties of our tree decompositions

Connected For every vertex, its bags are connected.
Covering Bags cover all edges

Strictness Subtrees cover ever “smaller” subgraphs.
Normal Subtrees cover connected subgraphs.
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We use decompositions of bounded width.

graph G tree decomposition D

Width of tree decompositions
width(D) = maximum bag size −1.

Graphs with width-bounded decompositions

• Paths and trees have width-1 decompositions,
• Series-parallel graphs have width-2 decompositions.
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Different tree decompositions are possible.

Flexibility of tree decompositions

• Many width-optimal decompositions exist in general.
• More apparent with a slightly higher width.

Width-3 decompositions of a string structure
string structure S

decomposition D1 decomposition D2 . . .
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Our logic adds quantifying decompositions.

Structures expanded by decompositions
Combining string structure S and decomposition D into a
structure like (S,D) =

Decomposition MSO (DMSO) for structures

Syntax ψ = ∃width≤w D
[
ϕ
]

with MSO ϕ and w ∈ N.
Semantics A |= ψ if (A,D) |= ϕ for a width-w tree

decomposition D of A.

8 / 14



Context-Free
Graph Properties

via Definable
Decompositions

Michael Elberfeld
(paper author)

Kord Eickmeyer
(gives talk)

Beyond Monadic
Second-Order Logic

Our Logic:
Decomposition
MSO

Aspect I:
Formal languages

Aspect II:
Model Theory

Aspect III:
Algorithm Design

Conclusion

DMSO on strings captures context-freeness.

Theorem
The DMSO-definable properties of strings are the
context-free languages.

Proof relates matchings and decompositions.

• Define CFLs in terms of “∃ Match MSO”-logic.

• From |= ϕ to |= ϕ′.

• From (S,D) |= ϕ′ to (S,M) |= ϕ.
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Higher width means higher expressivity.

Recall: Syntax of DMSO-logic
DMSO-formulas are ψ = ∃width≤w D

[
ϕ
]

with width w ∈ N

Theorem
For every w ≥ 3 and w ′ ≤ w − 2, formulas with width w
are more expressive than formulas with width w ′.

Proving subset and not-equal relation.

“⊆” • Width-w cover width-w ′ decompositions.
• Restricting to width-w ′ is MSO-definable.

“ 6=” • Width w = 4 allows to define subdivided stars
with 4 paths of equal length like , but

• is not possible with w = 2
(via Ehrenfeucht-Fraı̈ssé games).
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Satisfiability for DMSO-formulas is decidable.

Theorem
Testing whether a given DMSO-formula
ψ = ∃width≤w D

[
ϕ
]

has an A with A |= ψ is decidable.

Proof is based on Seese’s Theorem.

• To test if there is A with A |= ψ, we
test if there is A and width-w D with (A,D) |= ϕ.

• Expansion (A,D) has tree width at most w + 2.
• Thus, satisfiability for subformula ϕ is decidable

[Seese, 1991].
• In turn, satisfiability for formula ψ is decidable.
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Model Checking DMSO-formulas in PTIME.

Theorem
Each DMSO-definable property is decidable in
polynomial time.

Proof is based on dynamic programming.

• Let ψ = ∃width≤w D
[
ϕ
]

be a formula for the property.
• We only need to look at width-w decompositions.

recursion Try all root bags and all ways of extending it.
Strictness implies exponential time.

dynamic Bottom-up evaluation of recursive calls.
Normal condition implies polynomial time.
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Conclusion

Summary

• DMSO-logic is proposed to capture the notion of
context-freeness for graphs.

• Basic expressibility and closure results.
• Satisfiability is decidable, model checking in PTIME.

Outlook

• Compare DMSO-logic to grammar-based notions of
context-freeness for graphs?

• Model checking . . .
. . . fixed-parameter tractable with parameter |ψ|?
. . . in LOGCFL ⊆ NC2 ⊆ PTIME for each fixed ψ?
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