Context-Free Graph Properties via Definable Decompositions

Michael Elberfeld (paper author)

Kord Eickmeyer (gives talk)

Beyond Monadic Second-Order Logic

Our Logic: Decomposition MSO

Aspect I: Formal languages

Aspect II: Model Theory

Aspect III: Algorithm Design

Conclusion

Context-Free Graph Properties via Definable Decompositions

Michael Elberfeld (paper author)

Kord Eickmeyer (gives talk)

RWTH Aachen University

CSL 2016 Marseille, 30 August, 2016

MSO-logic is used outside model theory.

Monadic second-order (MSO) logic

Syntax φ quantifies sets $\exists X \subseteq U$ besides $\exists x \in U$, Semantics defines property {finite structure $A \mid A \models \varphi$ }.

Strings of even length are MSO-definable

Language $L = \{a^n \mid n \text{ is even}\}\$ is MSO-definable since Property STRUCTURE(L) = { $\diamond \diamond \circ$, $\diamond \diamond \diamond \diamond \diamond \circ$, ... } is MSO-definable via guess-and-check coloring.

Language-Theoretic Fact *Regular languages are* MSO-*definable, and vice versa.* [Büchi, 1960, Elgot, 1961, Trakhtenbrot, 1961]

Context-Free Graph Properties via Definable Decompositions

Michael Elberfeld (paper author)

Kord Eickmeyer (gives talk)

Beyond Monadic Second-Order Logic

Our Logic: Decomposition MSO

Aspect I: Formal languages

Aspect II: Model Theory

Aspect III: Algorithm Design

MSO-logic is used outside model theory.

Monadic second-order (MSO) logic

Syntax φ quantifies sets $\exists X \subseteq U$ besides $\exists x \in U$, Semantics defines property {finite structure $A \mid A \models \varphi$ }.

Strings of even length are MSO-definable

Language $L = \{a^n \mid n \text{ is even}\}\$ is MSO-definable since Property STRUCTURE $(L) = \{\bullet \rightarrow \bullet, \bullet \rightarrow \rightarrow \rightarrow \bullet, \ldots\}\$ is MSO-definable via guess-and-check coloring.

Language-Theoretic Fact Regular languages are MSO-definable, and vice versa.

[Büchi, 1960, Elgot, 1961, Trakhtenbrot, 1961]

Context-Free Graph Properties via Definable Decompositions

Michael Elberfeld (paper author)

Kord Eickmeyer (gives talk)

Beyond Monadic Second-Order Logic

Our Logic: Decomposition MSO

Aspect I: Formal languages

Aspect II: Model Theory

Aspect III: Algorithm Design

MSO-logic is used outside model theory.

Monadic second-order (MSO) logic

Syntax φ quantifies sets $\exists X \subseteq U$ besides $\exists x \in U$, Semantics defines property {finite structure $\mathcal{A} \mid \mathcal{A} \models \varphi$ }.

3-colorable graphs are MSO-definable We have φ , but $\chi \neq \varphi$ with MSO-formula

$$\varphi = \exists \mathbf{R}, \mathbf{G}, \mathbf{B} \subseteq \mathbf{U} \\ \forall \mathbf{v} \in \mathbf{U} \left[\mathbf{v} \in \mathbf{R} \lor \mathbf{v} \in \mathbf{G} \lor \mathbf{v} \in \mathbf{B} \right] \land \\ \forall (\mathbf{v}, \mathbf{w}) \in \mathbf{E} \neg \left[\mathbf{v}, \mathbf{w} \in \mathbf{R} \lor \mathbf{v}, \mathbf{w} \in \mathbf{G} \lor \mathbf{v}, \mathbf{w} \in \mathbf{B} \right] \end{cases}$$

Context-Free Graph Properties via Definable Decompositions

Michael Elberfeld (paper author)

Kord Eickmeyer (gives talk)

Beyond Monadic Second-Order Logic

Our Logic: Decomposition MSO

Aspect I: Formal languages

Aspect II: Model Theory

Aspect III: Algorithm Design

Conclusion

Algorithmic Fact

Each MSO-definable property is solvable in linear time on structures with bounded tree width. [Courcelle, 1990]

Second-order logic is too general.

Second-order (SO) logic

Syntax φ uses higher-ary quantifiers $\exists X \subseteq U \times U$, Semantics defines property {finite structure $\mathcal{A} \mid \mathcal{A} \models \varphi$ }.

Complexity Fact

The SO-definable properties of strings are the problems of the polynomial hierarchy (PH). [Stockmeyer, 1976]

SO's expressivity and complexity Since $P \subseteq NP \subseteq PH \subseteq PSPACE$,

- SO-definable properties are far beyond regular and context-free, and
- modest polynomial runtimes are out of reach.

Context-Free Graph Properties via Definable Decompositions

Michael Elberfeld (paper author)

Kord Eickmeyer (gives talk)

Beyond Monadic Second-Order Logic

Our Logic: Decomposition MSO

Aspect I: Formal languages

Aspect II: Model Theory

Aspect III: Algorithm Design

A matching relation contains nested tuples.

String structures with matchings

The logic "∃ Match MSO" for string structures

Syntax $\psi = \exists^{\text{matching}} M [\varphi]$ with MSO-formula φ . Semantics String structure $S \models \psi$ if $(S, \mathcal{M}) \models \varphi$ for a matching \mathcal{M} of S.

Language-Theoretic Fact

The "∃ Match MSO"-*definable properties of strings are the context-free languages.*

[Lautemann, Schwentick, and Thérien, 1995]

Context-Free Graph Properties via Definable Decompositions

Michael Elberfeld (paper author)

Kord Eickmeyer (gives talk)

Beyond Monadic Second-Order Logic

Our Logic: Decomposition MSO

Aspect I: Formal languages

Aspect II: Model Theory

Aspect III: Algorithm Design

Paper generalizes from strings to graphs.

Research question

"a more general study of these logics will prove worthwhile in the context of general finite structures, instead of strings."

[Lautemann, Schwentick, and Thérien, 1995]

Paper's contribution

A logic for structures with bounded tree width along with understanding the following aspects:

languages Its equivalence to context-free languages.

model theory Its expressive power.

algorithms Its satisfiability and evaluation problems.

Context-Free Graph Properties via Definable Decompositions

Michael Elberfeld (paper author)

Kord Eickmeyer (gives talk)

Beyond Monadic Second-Order Logic

Our Logic: Decomposition MSO

Aspect I: Formal languages

Aspect II: Model Theory

Aspect III: Algorithm Design

We use decompositions of bounded width.

Properties of our tree decompositions

Connected For every vertex, its bags are connected.

- Covering Bags cover all edges
- Strictness Subtrees cover ever "smaller" subgraphs.
 - Normal Subtrees cover connected subgraphs.

Context-Free Graph Properties via Definable Decompositions

Michael Elberfeld (paper author)

Kord Eickmeyer (gives talk)

Beyond Monadic Second-Order Logic

Our Logic: Decomposition MSO

Aspect I: Formal languages

Aspect II: Model Theory

Aspect III: Algorithm Design

We use decompositions of bounded width.

Width of tree decompositions

width(\mathcal{D}) = maximum bag size -1.

Graphs with width-bounded decompositions

- Paths and trees have width-1 decompositions,
- Series-parallel graphs have width-2 decompositions.

Context-Free Graph Properties via Definable Decompositions

Michael Elberfeld (paper author)

Kord Eickmeyer (gives talk)

Beyond Monadic Second-Order Logic

Our Logic: Decomposition MSO

Aspect I: Formal languages

Aspect II: Model Theory

Aspect III: Algorithm Design

Different tree decompositions are possible.

Flexibility of tree decompositions

- Many width-optimal decompositions exist in general.
- More apparent with a slightly higher width.

Width-3 decompositions of a string structure string structure \mathcal{S}

decomposition \mathcal{D}_1

decomposition \mathcal{D}_2

Context-Free Graph Properties via Definable Decompositions

Michael Elberfeld (paper author)

Kord Eickmeyer (gives talk)

Beyond Monadic Second-Order Logic

Our Logic: Decomposition MSO

Aspect I: Formal languages

Aspect II: Model Theory

Aspect III: Algorithm Design

Our logic adds quantifying decompositions.

Structures expanded by decompositions

Decomposition MSO (DMSO) for structures

Syntax $\psi = \exists^{\text{width} \leq w} D[\varphi]$ with MSO φ and $w \in \mathbb{N}$. Semantics $\mathcal{A} \models \psi$ if $(\mathcal{A}, \mathcal{D}) \models \varphi$ for a width-*w* tree decomposition \mathcal{D} of \mathcal{A} . Context-Free Graph Properties via Definable Decompositions

Michael Elberfeld (paper author)

Kord Eickmeyer (gives talk)

Beyond Monadic Second-Order Logic

Our Logic: Decomposition MSO

Aspect I: Formal languages

Aspect II: Model Theory

Aspect III: Algorithm Design

DMSO on strings captures context-freeness.

Theorem The DMSO-definable properties of strings are the context-free languages.

Proof relates matchings and decompositions.

• Define CFLs in terms of "∃ Match MSO"-logic.

0

б

<mark>⊙</mark>≫о

 $\overline{\mathbf{o}}$

0 % X

000

oжо

Context-Free Graph Properties via Definable Decompositions

Michael Elberfeld (paper author)

Kord Eickmeyer (gives talk)

Beyond Monadic Second-Order Logic

Our Logic: Decomposition MSO

Aspect I: Formal languages

Aspect II: Model Theory

Aspect III: Algorithm Design

Conclusion

• From $(\mathcal{S}, \mathcal{D}) \models \varphi'$ to $(\mathcal{S}, \mathcal{M}) \models \varphi$.

Higher width means higher expressivity.

Recall: Syntax of DMSO-logic DMSO-formulas are $\psi = \exists^{\text{width} \leq w} D[\varphi]$ with width $w \in \mathbb{N}$

Theorem

"≠"

For every $w \ge 3$ and $w' \le w - 2$, formulas with width w are more expressive than formulas with width w'.

Proving subset and not-equal relation.

- "⊆" Width-*w* cover width-*w*′ decompositions.
 - Restricting to width-w' is MSO-definable.
 - Width w = 4 allows to define subdivided stars with 4 paths of equal length like $\sqrt{6}$, but

Context-Free Graph Properties via Definable Decompositions

Michael Elberfeld (paper author)

Kord Eickmeyer (gives talk)

Beyond Monadic Second-Order Logic

Our Logic: Decomposition MSO

Aspect I: Formal languages

Aspect II: Model Theory

Aspect III: Algorithm Design

Conclusion

 is not possible with w = 2 (via Ehrenfeucht-Fraïssé games).

Satisfiability for DMSO-formulas is decidable.

Theorem

Testing whether a given DMSO-formula $\psi = \exists^{\text{width} \leq w} D[\varphi]$ has an \mathcal{A} with $\mathcal{A} \models \psi$ is decidable.

Proof is based on Seese's Theorem.

- To test if there is A with A ⊨ ψ, we test if there is A and width-w D with (A, D) ⊨ φ.
- Expansion $(\mathcal{A}, \mathcal{D})$ has tree width at most w + 2.
- Thus, satisfiability for subformula φ is decidable
- In turn, satisfiability for formula ψ is decidable.

Context-Free Graph Properties via Definable Decompositions

Michael Elberfeld (paper author)

Kord Eickmeyer (gives talk)

Beyond Monadic Second-Order Logic

```
Our Logic:
Decomposition
MSO
```

Aspect I: Formal languages

Aspect II: Model Theory

Aspect III: Algorithm Design

Conclusion

[Seese, 1991].

Model Checking DMSO-formulas in PTIME.

Theorem Each DMSO-definable property is decidable in polynomial time.

Proof is based on dynamic programming.

- Let $\psi = \exists^{width \le w} D[\varphi]$ be a formula for the property.
- We only need to look at width-w decompositions.
- recursion Try all root bags and all ways of extending it. Strictness implies exponential time.
- dynamic Bottom-up evaluation of recursive calls. Normal condition implies polynomial time.

Context-Free Graph Properties via Definable Decompositions

Michael Elberfeld (paper author)

Kord Eickmeyer (gives talk)

Beyond Monadic Second-Order Logic

Our Logic: Decomposition MSO

Aspect I: Formal languages

Aspect II: Model Theory

Aspect III: Algorithm Design

Conclusion

Summary

- DMSO-logic is proposed to capture the notion of context-freeness for graphs.
- Basic expressibility and closure results.
- Satisfiability is decidable, model checking in PTIME.

Outlook

- Compare DMSO-logic to grammar-based notions of context-freeness for graphs?
- Model checking ...

... fixed-parameter tractable with parameter $|\psi|$?

... in LOGCFL \subseteq NC² \subseteq PTIME for each fixed ψ ?

Context-Free Graph Properties via Definable Decompositions

Michael Elberfeld (paper author)

Kord Eickmeyer (gives talk)

Beyond Monadic Second-Order Logic

Our Logic: Decomposition MSO

Aspect I: Formal languages

Aspect II: Model Theory

Aspect III: Algorithm Design

References I

- Büchi, J. R. (1960).
 Weak second-order arithmetic and finite automata.
 Math. Logic Quart., 6(1–6):66–92.

Courcelle, B. (1990). Graph rewriting: An algebraic and logic approach. In Handbook of Theoretical Computer Science, Volume B, pages 193–242. Elsevier and MIT Press.

Elgot, C. C. (1961).

Decision problems of finite automata design and related arithmetics.

Transactions of the American Mathematical Society, 98(1):21–51.

Context-Free Graph Properties via Definable Decompositions

Michael Elberfeld (paper author)

Kord Eickmeyer (gives talk)

References

References II

Seese, D. (1991).

The structure of the models of decidable monadic theories of graphs.

Annals of pure and applied logic, 53(2):169–195.

- Stockmeyer, L. J. (1976). The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1 – 22.
- Trakhtenbrot, B. A. (1961). Finite automata and logic of monadic predicates. Doklady Akademii Nauk SSSR, 140:326–329. In Russian.

Context-Free Graph Properties via Definable Decompositions

Michael Elberfeld (paper author)

Kord Eickmeyer (gives talk)

References