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Constraint satisfaction problems

A homomorphism between two τ -structures A and B is a function
h : A→ B such that for every R ∈ τ , and every (a1, . . . , an) ∈ An,

(a1, . . . , an) ∈ RA =⇒ (h(a1), . . . , h(an)) ∈ RB.

Every τ -structure B gives rise to the following constraint
satisfaction problem CSP(B):

Given a τ -structure A, does there exist a homomorphism
h : A→ B?



Complexity of CSP

It is easy to see that every CSP(B) is in NP. Moreover, there are
NP-complete cases.

Examples.
I Let Kn be the complete graph with n nodes. Then CSP(Kn)

is the n-Colorability problem which is NP-complete for
n ≥ 3 and in PTIME for n ≤ 2.

I If B = ({0, 1},RB) with RB = {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
then CSP(B) amounts to the Positive 1-in-3 Sat problem:
each 3-CNF formula ϕ with only positive literals is encoded as
A, where RA = {(x , y , z) : x ∨ y ∨ z is a clause in ϕ}.
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Feder-Vardi conjecture

All known examples of CSP(B) that are not NP-complete are in
PTIME. Feder and Vardi conjectured that this is not accidental:

Dichotomy conjecture: (Feder-Vardi 98) For every structure B,
the problem CSP(B) is either in PTIME or NP-complete.

The conjecture is known to be true, if
I B is a graph (Hell-Nesetril 90).
I B is a Boolean structure, i.e., |B| = 2 (Schaefer 78).
I B is a three-element structure, i.e., |B| = 3 (Bulatov 06).

The general case of the conjecture remains unsettled.
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Monotone monadic strict NP

Since all constraint satisfaction problems are in NP, by Fagin’s
Theorem, they are expressible in existential second-order logic Σ1

1.

Feder and Vardi identified a natural fragment, MMSNP, of Σ1
1 that

suffices for defining CSP(B) for every B.

MMSNP is defined by the following syntactic restrictions:
I all second-order quantifiers are monadic;
I all first-order quantifiers are universal;
I no inequalities occur;
I relation symbols from the underlying vocabulary occur only

negatively.
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MMSNP and CSP

The model-checking problem MC(ϕ) of an MMSNP-formula ϕ is:
Given a τ -structure A, is the case that A |= ϕ?

Theorem: (Feder-Vardi 98, Kun-Nesetril 08) For every
ϕ ∈ MMSNP there is a structure B such that MC(ϕ) is
equivalent to CSP(B) w.r.t. PTIME-reductions.

Corollary: The dichotomy conjecture for CSP holds if and only if
it holds for MMSNP.



Dependence logic

Dependence logic D was introduced by Väänänen 07. It is a
formalism for expressing and analyzing notions of dependence and
independence in computer science and mathematics, such as

I functional dependencies in relational databases;
I independence in linear algebra;
I independence in probability theory.

The origins of D can be traced back to partially ordered quantifiers
(Henkin 61) and independence-friendly logic (Hintikka-Sandu 89).

Theorem: (Väänänen 07) D has the same expressive power as
existential second-order logic Σ1

1.



Dependence logic

Thus, by Fagin’s Theorem, D captures NP on finite structures. In
particular, every CSP(B) is definable in D.

Surprisingly, it turns out that there are NP-complete CSPs that
can be expressed already with quantifier-free formulas of D:

Theorem: (Jarmo Kontinen 13) 3-Sat can be reduced to the
model-checking problem of the formula

dep(x ; y) ∨ dep(u; v) ∨ dep(u; v).

This raises the question whether there is a natural fragment of D
that captures exactly the class of all CSPs.
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Dependence logic D: Syntax

Let τ be a relational signature. The set of D(τ) -formulas is
defined by the following grammar:

ϕ :: = x1 = x2 | ¬ x1 = x2 | R(x1, . . . , xn) | ¬R(x1, . . . , xn) |
dep(x1, . . . , xn; y) | (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2) | ∀xϕ | ∃xϕ,

where R ∈ τ .

Note that formulas are assumed to be in negation normal form:
negations may occur only in front of atomic formulas.
Dependence atoms occur only positively.



Dependence logic D: Team semantics

Let A be a structure with domain A.

A team on A is a set T of assignments s : V → A for some fixed
set V = dom(T ) of variables.

Literals:
I A,T |= λ ⇐⇒ A, s |= λ for all s ∈ T .

Connectives:
I A,T |= ϕ ∧ ψ ⇐⇒ A,T |= ϕ and A,T |= ψ.

I A,T |= ϕ ∨ ψ ⇐⇒ there are T ′,T ′′ ⊆ T s.t. T ∪ T ′ = T ′′,
A,T ′ |= ϕ and A,T ′′ |= ψ.
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Team semantics: quantifiers

To define the semantics of quantification, we use the following
notation:

I T [A/x ] = {s[a/x ] | s ∈ T , a ∈ A}.
I T [F/x ] = {s[F (s)/x ] | s ∈ T} for each function F : T → A.

Quantifiers:
I A,T |= ∀xψ ⇐⇒ A,T [A/x ] |= ψ.
I A,T |= ∃xψ ⇐⇒ there is F : T → A s.t. A,T [F/x ] |= ψ.
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Team semantics: dependence atoms

A dependence atom dep(x1, . . . , xn; y) states that the value of y
depends functionally on the values of xxx = (x1, . . . , xn):

Dependence atoms:
I A,T |= dep(xxx ; y) ⇐⇒ there is f : An → A s.t. for all s ∈ T ,

s(y) = f (s(x1), . . . , s(xn)).



Team semantics: dependence atoms

A uniform dependence atom udep(x1, . . . , xn; y1, . . . , yn) states
that the values of yyy = (y1, . . . , yn) depend functionally on the
values of xxx = (x1, . . . , xn) via a unary function:

Uniform dependence atoms:
I A,T |= udep(xxx ; yyy) ⇐⇒ there is g : A→ A s.t. for all s ∈ T ,

s(y1) = g(s(x1)), . . . , s(yn) = g(s(xn)).



Team semantics: dependence atoms

A uniform k-valued dep. atom udep[k](x1, . . . , xn;α1, . . . , αn)
states that the values of α1, . . . , αn depend functionally on the
values of x1, . . . , xn via a unary function:

Uniform k-valued dependence atoms:
I A,T |= udep[k](xxx ;ααα) ⇐⇒ there is h : A→ [k] s.t. ∀s ∈ T ,

s(α1) = h(s(x1)), . . . , s(αn) = h(s(xn)).

Here α1, . . . , αn are k-valued variables that range over the set
[k] = {1, . . . , k}.



Quantifier-free monotone uniform dependence logic

The syntax of quantifier-free monotone dependence logic with
uniform k-valued dependence atoms, QF-MUD[k]:

ϕ :: = α = i | ¬R(xxx) | udep[k](xxx ;ααα) | (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2),

where i ∈ [k].

The union of QF-MUD[k] over all k ≥ 1 is denoted by
QF-MUD[ω].



Universal monotone uniform dependence logic

The syntax of universal monotone dependence logic with uniform
k-valued dependence atoms, ∀-MUD[k]:

ϕ :: = ψ | ∀xϕ | ∀αϕ,

where ψ ∈ QF-MUD[k].

The union of ∀-MUD[k] over all k ≥ 1 is denoted by ∀-MUD[ω].

Analogously to MMSNP, the logics QF-MUD[k] and ∀-MUD[k]
admit no inequalities and only negative occurrences of R ∈ τ .
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Main results

We prove first that any CSP(B) is definable in ∀-MUD[ω],
assuming that B has only one relation. This suffices, since every
CSP(C) is PTIME-equivalent to such CSP(B).

Theorem A: (∀-MUD[ω] captures CSP)
Let τ = {R}, and let B be a τ -structure with |B| = k. There is a
sentence ϕB ∈ ∀-MUD[k] such that

A |= ϕB ⇐⇒ A ∈ CSP(B)
holds for all τ -structures A.
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Main results

On the other hand, we prove that MMSNP is at least as expressive
as ∀-MUD[ω].

Theorem B: (∀-MUD[ω] is contained in MMSNP)
Let ϕ ∈ ∀-MUD[ω] be a sentence. There is a sentence
ϕ∗ ∈ MMSNP such that

A |= ϕ ⇐⇒ A |= ϕ∗

holds for all τ -structures A.

Corollary: The dichotomy conjecture for CSP holds if and only if
it holds for ∀-MUD[ω].
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Expressing CSP in universal monotone uniform DL

To prove Theorem A, it suffices to find a formula
ψB ∈ QF-MUD[k] such that

A,F |= ψB ⇐⇒ A ∈ CSP(B),
where F is the full team consisting of all assignments
s : {x1, . . . , xn, α1, . . . , αn} → A ∪ [k].

This is because A,F |= ψB ⇐⇒ A |= ϕB, where ϕB is the
sentence ∀xxx∀αααψB.



Expressing CSP in universal monotone uniform DL

Observe next that if A,T |= udep[k](xxx ,ααα), then there is a
homomorphism h : (A,RT ,xxx )→ ([k],RT ,ααα).
Thus, if RA ⊆ RT ,xxx and RT ,ααα ⊆ RB, then A ∈ CSP(B).

(Here RT ,xxx is the relation {s(xxx) : s ∈ T}, and similarly for RT ,ααα.)

The idea of the proof is to build ψB (using disjunctions) in such a
way that if A,F |= ψB, then there is a subteam T of F satisfying
the conditions above.



Expressing CSP in universal monotone uniform DL

Observe next that if A,T |= udep[k](xxx ,ααα), then there is a
homomorphism h : (A,RT ,xxx )→ ([k],RT ,ααα).
Thus, if RA ⊆ RT ,xxx and RT ,ααα ⊆ RB, then A ∈ CSP(B).

(Here RT ,xxx is the relation {s(xxx) : s ∈ T}, and similarly for RT ,ααα.)

The idea of the proof is to build ψB (using disjunctions) in such a
way that if A,F |= ψB, then there is a subteam T of F satisfying
the conditions above.



Universal monotone uniform DL and MMSNP

In the proof of Theorem B we define inductively a translation of
QF-MUD[k] to the extension of MMSNP with k-valued variables.

The translation of each formula ψ ∈ QF-MUD[k] is of the form
∃P1 . . . ∃Pk`∀xxx∀yyy∀ααα(R(xxxααα)→ ψ+), where ψ+ is quantifier free.

Note that here R is an extra relation symbol, whose interpretation
is given by the team on which ψ is evaluated: we prove that

A,T |= ψ ⇐⇒ (A,RT ,xxxααα) |= ∃P∀xxx∀yyy∀ααα(R(xxxααα)→ ψ+).

This extends in a straightforward way to sentences of ∀-MUD[k]:

A,T |= ∀xxx∀αααψ ⇐⇒ A |= ∃P∀xxx∀yyy∀αααψ+.

Theorem B follows from this, as the k-valued variables can be
easily eliminated from sentences of MMSNP.
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Conclusion

Our main results settle the complexity of model-checking for
∀-MUD[ω]: for each sentence ϕ ∈ ∀-MUD[ω], the problem MC(ϕ)
is PTIME-equivalent to some CSP(B), and vice versa.

However, the exact expressive power of ∀-MUD[ω] is not clear yet:
I Is CSP(B) definable in ∀-MUD[ω] for every B?
I Is ∀-MUD[ω] a proper fragment of MMSNP?

Another natural question concerns the relationship between the
uniform and the ordinary dependence atoms:

I Is udep[k](xxx ;ααα) definable in the universal fragment of D?

Since D captures Σ1
1, udep[k](xxx ;ααα) is definable in full D, but its

definition seems to require existential quantification.
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Thanks for your attention!


