

Monadic second order finite satisfiability and unbounded tree-width

Florian Zuleger, Technische Universität Wien Joint work with Tomer Kotek, Helmut Veith CSL, Marseille, 29.08.2016

Deciding finite satisability

Theorem [Trakthenbrot 1950]

The finite satisfiability problem of First Order logic FO is undecidable.

Approaches for decidability

- 1) Restricting the logic
- 2) Restricting the structures

Restricting the logic

Decidable fragments of FO:

- Prefix classes of FO
- FO²: two-variable fragment of FO
- C²: FO² with counting quantifiers
- GF: guarded fragment of FO
- Modal logics
- Description logics
- Temporal logics

Restricting the structures

Theorem [Courcelle 1990]

The finite satisfiability problem of Monadic Second Order Logic MSO by graphs of bounded tree-width is decidable.

Theorem [Seese 1991]

The finite satisfiability of MSO sentences over any class of graphs of unbounded tree-width is undecidable.

Restricting the logic and adding structures

 FO^2/C^2

symbol s interpreted as

- linear order
- pre-order
- equivalence relation
- weak transitive closure
- tree

FO² + special relation

[Otto 2001]

[Bojanczyk, Muscholl, Schwentik,

Segoufin, David 2006]

[Schwentick, Zeume 2010]

[Kieronski 2011]

C² + two trees

[Charatonik, Witkowski 2013]

C² + two trees

Definition $(T(s_1, s_2))$

The class of finite structures in which s_1 , s_2 are interpreted as directed trees.

Theorem [Charatonik, Witkowski 2013]

Satisfiability of C_2 over $T(s_1, s_2)$ is NEXPTIME-complete.

Our Result

```
Given \alpha_{MSO} \in MSO(\sigma_{MSO})

\alpha_{C2} \in C^2(\sigma_{C2})

k \in N
```

Problem: Is $\alpha_{MSO} \wedge \alpha_{C2}$ satisfiable by a finite structure M with treewidth(M| $_{\sigma_{MSO}}$) \leq k?

Theorem [Kotek, Veith, Z.] The above problem is decidable.

Generalization of the results

- Courcelle 1990
- Charatonik,
 Witkowski 2013
 (for one tree)

Our Result

Given $\alpha_{MSO} \in MSO(\sigma_{MSO})$ $\alpha_{C2} \in C^2(\sigma_{C2})$ $k \in N$

Problem: Is $\alpha_{MSO} \wedge \alpha_{C2}$ satisfiable by a finite structure M with treewidth(M| $_{\sigma_{MSO}}$) \leq k?

Theorem [Kotek, Veith, Z.] The above problem is decidable.

Motivation: Verification of Data Structures

MSO

Two disjoint data structures

- A binary tree whose leaves are chained
- A cyclic list (tree-width ≤3)

C^2

- Every tree leaf has exactly one outgoing edge to the cyclic list
- The cyclic list nodes have incoming edges only from the tree leaves

(unbounded tree-width)

Application: MSO with cardinalities

MSO^{card} extends MSO by cardinality constraints

$$|X_1| + ... + |X_r| \le |Y_1| + ... + |Y_t|$$

Theorem [Klaedtke and Rue 2003]

MSO^{card} satisfiability on finite structures of bounded tree-width is undecidable.

Application: MSO with cardinalities

- MSO^{\exists card} is the fragment of MSO^{card}, where $\exists \overline{X}. \varphi$, and only \overline{X} occur in cardinality constraints
- Example: $\exists X_1 . |X_1| = |\neg X_1| \land \varphi$

Theorem [Kotek, Veith, Z]

MSO^{3 card} satisfiability on finite structures of bounded tree-width is decidable.

Application: MSO with cardinalities

- MSO^{\exists card} is the fragment of MSO^{card}, where $\exists \overline{X}. \varphi$, and only \overline{X} occur in cardinality constraints
- Example: $\exists X_1$. "F is a bijection from X_1 to $\neg X_1$ " $\land \varphi$

Theorem [Kotek, Veith, Z]

MSO^{∃card} satisfiability on finite structures of bounded tree-width is decidable.

Outline of the Proof

- 1. Our Separation Theorem: Reduction to the case that σ_{MSO} and σ_{C2} only share unary relation symbols
 - Types, Scott-Normal form, Colorings
- From structures of bounded tree-width to labeled binary trees
 - Translation schemes
- 3. From MSO to C²
 - Feferman-Vaught theorem on labeled trees, Hintikka sentences
- 4. Decidability of C² + binary tree
 - Charatonik and Witkowski, LICS 2013

Outline of the Proof

- 1. Our Separation Theorem: Reduction to the case that σ_{MSO} and σ_{C2} only share unary relation symbols
 - Types, Scott-Normal form, Colorings
- 2. From structures of bounded tree-width to labeled binary trees
 - Translation schemes
- 3. From MSO to C²
 - Feferman-Vaught theorem on labeled trees, Hintikka sentences
- 4. Decidability of C² + binary tree
 - Charatonik and Witkowski, LICS 2013

Separation Theorem

```
Given k \in \mathbb{N} and
          \alpha_{MSO} \in MSO(\sigma_{MSO}), \ \alpha_{C2} \in C^2(\sigma_{C2}),
there effectively are
          \alpha'_{MSO} \in MSO(\sigma'_{MSO}), \alpha'_{C2} \in C^2(\sigma'_{C2}),
          with \sigma'_{MSO} \cap \sigma'_{C2} = \text{"unary relation symbols"},
such that
 \alpha_{MSO} \wedge \alpha_{C2} is satisfiable by M with treewidth(M|_{\sigma_{MSO}}) \leq k
                                                iff
 \alpha'_{MSO} \wedge \alpha'_{C2} is satisfiable by M with treewidth(M|_{\sigma'_{MSO}}) \leq k.
 (All structures are finite.)
```

Shared Binary Symbols

Because of treewidth($M|_{\sigma_{MSO}}$) \leq k we can assume

 σ_{MSO} = some unary relations symbols + the binary relations symbols $R_1,...,R_k$

and

 $R_1,...,R_k$ are interpreted by functional relations.

Justification:

- 1. We can axiomatize that $R_1,...,R_k$ are functional.
- 2. Other shared symbols can be simulated by $R_1,...,R_k$ and unary relation symbols.

Main Idea of Separation Theorem

We introduce fresh copies $\overline{R_1},...,\overline{R_k}$ of $R_1,...,R_k$.

We obtain $\overline{\alpha_{MSO}}$ from α_{MSO} by replacing every R_i with its copy \overline{R}_i .

 $\overline{\alpha_{MSO}}$ and α_{C2} don't share binary relation symbols!

Problem:

The interpretations of $R_1,...,R_k$ and $\overline{R_1},...,\overline{R_k}$ do not need to agree in a model M of $\overline{\alpha_{MSO}}$ \wedge α_{C2} .

Main Idea: Swapping Edges

M is a model of $\overline{\alpha_{MSO}} \wedge \alpha_{C2}$

Idea:

Swap edges until the interpretations of $R_1,...,R_k$ and $\overline{R_1},...,\overline{R_k}$ do agree!

We will axiomatize conditions which guarantee that such a sequence of edge swaps always exists.

Main Idea: Swapping Edges

<u>Idea:</u>

Swap edges until the interpretations of $R_1,...,R_k$ and $\overline{R_1},...,\overline{R_k}$ do agree!

We will axiomatize conditions which guarantee that such a sequence of edge swaps always exists.

Scott-Normal Form

Every C² formula is equi-satisfiable to a forumla $\forall x,y. \ \phi \land \ \land_i \ \forall x \ \exists^{=1}y. \ S_i(x,y),$ where ϕ is quantifier-free.

In this talk, we assume

$$binary(\sigma_{C2}) = \{R_1, ..., R_k, S\}$$

and
$$\alpha_{C2} \in C_2(\sigma_{C2})$$
 is

$$\forall x,y. \phi \land \forall x \exists^{=1}y. S(x,y),$$

which already shows all difficulties.

Edge Swaps: Invariance of Validity

$$\forall x,y, \varphi \land \forall x \exists^{=1}y. S(x,y)$$

Lemma: Edge Swap does not affect validity.

Edge Swaps: Invariance of Validity

Lemma: Edge Swap does not affect validity.

Axiomatizing Edge-Types I

If a node has an outgoing edge

labeled by R_1 , R_2 , or an outgoing

edge labeled by $\overline{R_1}$, $\overline{R_2}$.

then the node is labeled by $P_{\{R_1,R_2\}}$

We axiomatize:

A node labeled by the unary relation $P_{\{R_1,R_2\}}$ has an outgoing edge labeled by $\overline{R_1}$ and $\overline{R_2}$ and an outgoing edge labeled by $\overline{R_1}$ and $\overline{R_2}$

Axiomatizing Edge-Types II

Problem:

Edge swap will violate the functionality of S.

Axiomatizing Edge-Types II

Insight: The axiomatized edge-types also need to contain

- the relation S,
- the inverse relations R_1^{-1} ,..., R_k^{-1} , S^{-1} .

Axiomatizing Edge-Types II

Lemma: 2x Edge Swap does not affect functionality.

Colorings

Problem:

Edge swap will violate the functionality of R₃

Colorings

Problem:

Edge swap will violate the functionality of R₃

<u>Idea:</u>

We add the unary relations satsified by start- and end-node of the edges (= 1-types) to the P-predicates

Colorings

Problem:

Edge swap will violate the functionality of R₃

<u>Idea:</u>

We add the unary relations satsified by start- and end-node of the edges (= 1-types) to the P-predicates

<u>Lemma:</u> We can axtiomatize that, if $\bigcap_{A} \bigcirc_{B} \bigcirc$, with $A,B \in \{R_1,...,R_k,S\}$, then \bigcirc and \bigcirc satisfy different unary relations.

Lemma: Every graph of bounded out-degree can be colored.

Outline of the Proof

- 1. Our Separation Theorem: Reduction to the case that σ_{MSO} and σ_{C2} only share unary relation symbols
 - Types, Scott-Normal form, Colorings
- 2. From structures of bounded tree-width to labeled binary trees
 - Translation schemes
- 3. From MSO to C²
 - Feferman-Vaught theorem on labeled trees, Hintikka sentences
- 4. Decidability of C² + binary tree
 - Charatonik and Witkowski, LICS 2013

From structures of bounded treewidth to labeled binary trees

```
Given k \in \mathbb{N} and
           \alpha_{MSO} \in MSO(\sigma_{MSO}), \alpha_{C2} \in C^2(\sigma_{C2}),
           with \sigma_{MSO} \cap \sigma_{C2} =  "unary relation symbols", \mathbf{s} \notin \sigma_{MSO},
there effectiely are
           \alpha'_{MSO} \in MSO(\sigma'_{MSO}), \alpha'_{C2} \in C^2(\sigma'_{C2}),
           with \sigma'_{MSO} \cap \sigma'_{C2} = \text{"unary relation symbols"}, \mathbf{s} \in \sigma'_{MSO},
such that
 \alpha_{MSO} \wedge \alpha_{C2} is satisfiable by M with treewidth(M|_{\sigma_{MSO}}) \leq k
                                                        iff
```

 α'_{MSO} $\wedge \alpha'_{C2}$ is satisfiable by M and **s is interpreted by a binary tree**. (All structures are finite.)

From structures of bounded treewidth to labeled binary trees

Because we are interested in finite structures M with

treewidth(
$$M|_{\sigma_{MSO}}$$
) $\leq k$,

we can assume that the relations

R₁,...,R_k are interpreted as a k-tree.

Idea:

We encode a k-tree by a binary tree using a translation scheme.

Encoding a k-tree by a binary tree

"1,…,k and N partition the universe"

In α and β we replace $\exists x. \varphi$ by $\exists x. \neg N(x) \land \varphi$ $\forall x. \varphi$ by $\exists x. \neg N(x) \rightarrow \varphi$

In α we replace $R_i(x,y)$ by the formula $\theta_i(x,y) =$ "x labeled by j" and ((x=y and "there is no ancestor labeled by j+i mod k+1") or ("y is an ancestor of x labeled by j+i mod k+1" and "there is no node between x and y labeled by j+i mod k+1"))

Outline of the Proof

- 1. Our Separation Theorem: Reduction to the case that σ_{MSO} and σ_{C2} only share unary relation symbols
 - Types, Scott-Normal form, Colorings
- 2. From structures of bounded tree-width to labeled binary trees
 - Translation schemes
- 3. From MSO to C²
 - Feferman-Vaught theorem on labeled trees, Hintikka sentences
- 4. Decidability of C² + binary tree
 - Charatonik and Witkowski, LICS 2013

From MSO to C²

```
Given
```

```
\alpha_{MSO} \in MSO(\sigma_{MSO}), there effectiely is \alpha'_{MSO} \in \mathbf{C}^2(\sigma'_{MSO}), such that
```

 α_{MSO} is satisfiable by a finite structure M, where s is interpreted as a binary tree,

iff

 α'_{MSO} is satisfiable by a finite structure M, where s is interpreted as a binary tree.

Hintakka Sentences

Let $q \in N$. There is a finite set HIN of MSO(σ) sentences of quantifier-rank q such that:

- The models of the formulae in HIN are mutually disjoint.
- Every $\alpha \in MSO(\sigma)$ of quantifier-rank q is equivalent to a (finite) disjunction $V_i \varphi_i$, with $\varphi_i \in HIN$.

From MSO to C²

Feferman-Vaught Theorem:

There effectively is a function $\phi_k, \phi_j \to \phi_h$ such that a tree satisfies the Hintakka sentence ϕ_h iff the subtrees at children of the root satisfy the Hintakka sentences ϕ_k, ϕ_i .

Reduction:

We can encode the function $\phi_k, \phi_j \rightarrow \phi_h$ by a C² formula.

We require the tree root to satisfy the formula $V_i C_{\phi_i}$, where $V_i \phi_i$ is equivalent to $\alpha_{MSO} \in MSO(\sigma_{MSO})$.

Outline of the Proof

- 1. Our Separation Theorem: Reduction to the case that σ_{MSO} and σ_{C2} only share unary relation symbols
 - Types, Scott-Normal form, Colorings
- From structures of bounded tree-width to labeled binary trees
 - Translation schemes
- 3. From MSO to C²
 - Feferman-Vaught theorem on labeled trees, Hintikka sentences
- 4. Decidability of C² + binary tree
 - Charatonik and Witkowski, LICS 2013

Thanks for your attention!