Completeness for coalgebraic fixpoint logic

Fatemeh Seifan

Joint with S. Enqvist and Y. Venema

Institute for Logic, Language and Computation University of Amsterdam

CSL2016

Syntax:

 $\varphi ::= \top \mid \bot \mid p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi \mid \neg \varphi \mid \mu.p\varphi' \mid \nu p.\varphi'$ (provided that all occurrences of *p* in φ' are positive)

Syntax:

$$\varphi ::= \top \mid \bot \mid p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi \mid \neg \varphi \mid \mu.p\varphi' \mid \nu p.\varphi'$$
 (provided that all occurrences of *p* in φ' are positive)

Semantics:

Syntax:

$$\varphi ::= \top \mid \bot \mid p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond \varphi \mid \Box \varphi \mid \neg \varphi \mid \mu.p\varphi' \mid \nu p.\varphi'$$
 (provided that all occurrences of p in φ' are positive)

Semantics:

$$\begin{split} & \llbracket \mu p.\varphi \rrbracket^{\mathbb{S},V} &:= & \bigcap \{U \in \mathcal{P}S \mid \llbracket \varphi \rrbracket^{\mathbb{S}[x \mapsto U]} \subseteq U \} \\ & \llbracket \nu p.\varphi \rrbracket^{\mathbb{S},V} &:= & \bigcup \{U \in \mathcal{P}S \mid U \subseteq \llbracket \varphi \rrbracket^{\mathbb{S}[x \mapsto U]} \} \end{aligned}$$

Kozen Axiomatisation:

- complete calculus for modal logic
- $\varphi(\mu p.\varphi) \vdash_{\mathsf{K}} \mu p.\varphi$
- if $\varphi(\psi) \vdash_{\mathbf{K}} \psi$ then $\mu p. \varphi \vdash_{\mathbf{K}} \psi$

Kozen Axiomatisation:

- complete calculus for modal logic
- $\varphi(\mu p.\varphi) \vdash_{\mathsf{K}} \mu p.\varphi$
- if $\varphi(\psi) \vdash_{\mathsf{K}} \psi$ then $\mu p. \varphi \vdash_{\mathsf{K}} \psi$ $(\varphi \vdash_{\mathsf{K}} \psi \text{ abbreviates } \vdash_{\mathsf{K}} \varphi \to \psi)$

Kozen Axiomatisation:

- complete calculus for modal logic
- $\varphi(\mu p.\varphi) \vdash_{\mathsf{K}} \mu p.\varphi$
- if $\varphi(\psi) \vdash_{\mathsf{K}} \psi$ then $\mu p. \varphi \vdash_{\mathsf{K}} \psi$ $(\varphi \vdash_{\mathsf{K}} \psi \text{ abbreviates } \vdash_{\mathsf{K}} \varphi \to \psi)$

Theorem (Kozen 1983)

 $\vdash_{\mathbf{K}}$ is sound and complete for *aconjunctive* formulas.

Kozen Axiomatisation:

- complete calculus for modal logic
- $\varphi(\mu p.\varphi) \vdash_{\mathsf{K}} \mu p.\varphi$
- if $\varphi(\psi) \vdash_{\mathsf{K}} \psi$ then $\mu p. \varphi \vdash_{\mathsf{K}} \psi$ $(\varphi \vdash_{\mathsf{K}} \psi \text{ abbreviates } \vdash_{\mathsf{K}} \varphi \to \psi)$

Theorem (Kozen 1983)

 $\vdash_{\mathbf{K}}$ is sound and complete for *aconjunctive* formulas.

Theorem (Walukiewicz 1995)

 $\vdash_{\mathbf{K}}$ is sound and complete for all formulas.

Kozen Axiomatisation:

- complete calculus for modal logic
- $\varphi(\mu p.\varphi) \vdash_{\mathsf{K}} \mu p.\varphi$
- if $\varphi(\psi) \vdash_{\mathbf{K}} \psi$ then $\mu p. \varphi \vdash_{\mathbf{K}} \psi$ $(\varphi \vdash_{\mathbf{K}} \psi \text{ abbreviates } \vdash_{K} \varphi \to \psi)$

Theorem (Kozen 1983)

 $\vdash_{\mathbf{K}}$ is sound and complete for *aconjunctive* formulas.

Theorem (Walukiewicz 1995)

 $\vdash_{\mathbf{K}}$ is sound and complete for all formulas.

Question

How to generalise this to similar logics?

▶ Given a functor T we define T_{ω} as:

$$\mathsf{T}_{\omega}X = \bigcup \{\mathsf{T}X' \mid X' \subseteq X, \ X' \text{ is finite } \}.$$

Then for every set X we define the function

$$Base_X : \mathsf{T}_\omega X \to \mathcal{P}_\omega X$$
$$\alpha \mapsto \bigcap \{ X' \subseteq X \mid \alpha \in \mathsf{T} X' \}.$$

▶ Given a functor T we define T_{ω} as:

$$\mathsf{T}_{\omega}X = \bigcup \{\mathsf{T}X' \mid X' \subseteq X, \ X' \text{ is finite } \}.$$

Then for every set X we define the function

$$Base_X : \mathsf{T}_\omega X \to \mathcal{P}_\omega X$$
$$\alpha \mapsto \bigcap \{ X' \subseteq X \mid \alpha \in \mathsf{T} X' \}.$$

Syntax of μ ML $_{\mathsf{T}}$:

▶ Given a functor T we define T_{ω} as:

$$T_{\omega}X = \bigcup \{TX' \mid X' \subseteq X, X' \text{ is finite } \}.$$

Then for every set X we define the function

$$Base_X : \mathsf{T}_\omega X \to \mathcal{P}_\omega X$$
$$\alpha \mapsto \bigcap \{ X' \subseteq X \mid \alpha \in \mathsf{T} X' \}.$$

Syntax of μML_T :

$$\varphi ::= \bot \mid \top \mid p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \nabla \alpha \mid \neg \varphi \mid \mu p. \varphi \mid \nu p. \varphi$$

▶ Given a functor T we define T_{ω} as:

$$T_{\omega}X = \bigcup \{TX' \mid X' \subseteq X, X' \text{ is finite } \}.$$

Then for every set X we define the function

$$Base_X : \mathsf{T}_\omega X \to \mathcal{P}_\omega X$$
$$\alpha \mapsto \bigcap \{ X' \subseteq X \mid \alpha \in \mathsf{T} X' \}.$$

Syntax of μ ML $_T$:

$$\varphi ::= \bot \mid \top \mid p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \nabla \alpha \mid \neg \varphi \mid \mu p. \varphi \mid \nu p. \varphi$$

with $\alpha \in T_{\omega}(\mu ML_T)$. No occurrence of p in φ may be in the scope of an odd number of negations.

Coalgebraic fixpoint logic Semantics:

Semantics:

▶ Given a functor T and a binary relation $R: X_1 \to X_2$ we define a relation $\overline{T}R: TX_1 \to TX_2$ by:

$$\overline{\mathsf{T}}R := \{((\mathsf{T}\pi_1)\rho, (\mathsf{T}\pi_2)\rho) \mid \rho \in \mathsf{T}R\}.$$

Semantics:

▶ Given a functor T and a binary relation $R: X_1 \to X_2$ we define a relation $\overline{T}R: TX_1 \to TX_2$ by:

$$\overline{\mathsf{T}}R := \{((\mathsf{T}\pi_1)\rho, (\mathsf{T}\pi_2)\rho) \mid \rho \in \mathsf{T}R\}.$$

$$\mathsf{T}X_1 \stackrel{\mathsf{T}\pi_1}{\longleftarrow} \mathsf{T}R \stackrel{\mathsf{T}\pi_2}{\longrightarrow} \mathsf{T}X_2$$

Semantics:

▶ Given a functor T and a binary relation $R: X_1 \to X_2$ we define a relation $\overline{\top}R: \top X_1 \to \top X_2$ by:

$$\overline{\mathsf{T}}R := \{((\mathsf{T}\pi_1)\rho, (\mathsf{T}\pi_2)\rho) \mid \rho \in \mathsf{T}R\}.$$

$$\mathsf{T}X_1 \stackrel{\mathsf{T}\pi_1}{\longleftarrow} \mathsf{T}R \stackrel{\mathsf{T}\pi_2}{\longrightarrow} \mathsf{T}X_2$$

- ► Formulas of μ ML_T will be interpreted over T-models $\mathbb{S} = (S, \sigma, m)$ with:
 - *S* is a set
 - $\sigma: S \to \mathsf{T} S$ is a coalgebra structure
 - $m: S \to \mathcal{P}X$ is a marking.

We sometimes denote (S, σ, m) by (S, σ_m) .

Semantics:

▶ Given a functor T and a binary relation $R: X_1 \to X_2$ we define a relation $\overline{\top}R: \top X_1 \to \top X_2$ by:

$$\overline{\mathsf{T}}R := \{((\mathsf{T}\pi_1)\rho, (\mathsf{T}\pi_2)\rho) \mid \rho \in \mathsf{T}R\}.$$

$$\mathsf{T}X_1 \stackrel{\mathsf{T}\pi_1}{\longleftarrow} \mathsf{T}R \stackrel{\mathsf{T}\pi_2}{\longrightarrow} \mathsf{T}X_2$$

- ► Formulas of μ ML_T will be interpreted over T-models $\mathbb{S} = (S, \sigma, m)$ with:
 - *S* is a set
 - $\sigma: S \to \mathsf{T} S$ is a coalgebra structure
 - $m: S \to \mathcal{P}X$ is a marking.

We sometimes denote (S, σ, m) by (S, σ_m) .

The satisfaction relation \Vdash_m is inductively defined:

$$s \Vdash_m \nabla \alpha \text{ iff } (\sigma_m(s), \alpha) \in \overline{\mathsf{T}}(\Vdash_m).$$

Example: The standard μ -calculus

Example: The standard μ -calculus

Set T to be the powerset functor \mathcal{P} :

Example: The standard μ -calculus

Set T to be the powerset functor \mathcal{P} :

$$\nabla\Phi \equiv \Box\bigvee\Phi\wedge\bigwedge\Diamond\Phi;$$

$$\Diamond\varphi \equiv \nabla\{\varphi,\top\} \ \ \text{and} \ \ \Box\varphi \equiv \nabla\emptyset\vee\{\varphi\}.$$

• Axiomatization of $\mu \rm ML_T$: complete axiomatixation for $\rm ML_T$ (Kupke, Kurz & Venema 2012) + axioms and rules for fixpoint operators

- Axiomatization of $\mu \rm ML_T$: complete axiomatixation for $\rm ML_T$ (Kupke, Kurz & Venema 2012) + axioms and rules for fixpoint operators
- Equivalence of $\mu \mathrm{ML_T}$ -formulas and parity T-automata holds (Venema 2006)

- Axiomatization of μ ML $_{\rm T}$: complete axiomatixation for ML $_{\rm T}$ (Kupke, Kurz & Venema 2012) + axioms and rules for fixpoint operators
- Equivalence of μML_{T} -formulas and parity T-automata holds (Venema 2006)

Question: Can we prove a completeness result for μML_T ?

- Axiomatization of μ ML $_{\rm T}$: complete axiomatixation for ML $_{\rm T}$ (Kupke, Kurz & Venema 2012) + axioms and rules for fixpoint operators
- Equivalence of μML_T -formulas and parity T-automata holds (Venema 2006)

Question: Can we prove a completeness result for μML_T ? **Yes!**

• Separate the dynamics from combinatorics

Separate the dynamics from combinatorics
 Dynamics: Coalgebra
 Combinatorics: Use binary relations to deal with trace combinatorics (trace management)

- Separate the dynamics from combinatorics
 Dynamics: Coalgebra
 Combinatorics: Use binary relations to deal with trace combinatorics (trace management)
- Focus on automata rather than formulas

- Separate the dynamics from combinatorics
 Dynamics: Coalgebra
 Combinatorics: Use binary relations to deal with trace combinatorics (trace management)
- Focus on automata rather than formulas Automata:
 - + Uniform, 'clean' presentation of fixpoint formulas
 - + Excellent framework for developing trace theory
 - + Direct formulation of simulation theorem
 - ? Automata and proof theory

Formulas and Automata

Theorem

There are maps $\mathbb{A}_-: \mu \mathtt{ML}_\mathsf{T} \to \mathsf{Aut}(\mathtt{ML}_1)$ and $\mathsf{tr}: \mathsf{Aut}(\mathtt{ML}_1) \to \mu \mathtt{ML}_\mathsf{T}$ such that:

- (1) preserve meaning: $\varphi \equiv \mathbb{A}_{\varphi}$ and $\mathbb{A} \equiv \operatorname{tr}(\mathbb{A})$
- (2) satisfy $\varphi \equiv_{\kappa} \operatorname{tr}(\mathbb{A}_{\varphi})$
- (3) interact nicely with Booleans, modality, fixpoints, and substitution.

Formulas and Automata

Theorem

There are maps $\mathbb{A}_-: \mu \mathtt{ML}_\mathsf{T} \to \mathsf{Aut}(\mathtt{ML}_1)$ and $\mathsf{tr}: \mathsf{Aut}(\mathtt{ML}_1) \to \mu \mathtt{ML}_\mathsf{T}$ such that:

- (1) preserve meaning: $\varphi \equiv \mathbb{A}_{\varphi}$ and $\mathbb{A} \equiv \operatorname{tr}(\mathbb{A})$
- (2) satisfy $\varphi \equiv_{\kappa} \operatorname{tr}(\mathbb{A}_{\varphi})$
- (3) interact nicely with Booleans, modality, fixpoints, and substitution.

Item (2) enables us to apply proof-theoretic concepts, such as consistency, to automata.

- ▶ Satisfiability game S(A) (Fontain, Leal & Venema 2010)
 - basic positions are binary relations: $R \in \mathcal{P}(A \times A)$
 - R corresponds to $\bigwedge \{\Theta(a) \mid a \in \operatorname{Rng} R\}$
 - \exists wins a match $\rho = R_0 R_1 ...$ if there is no bad trace through ρ

- ▶ Satisfiability game S(A) (Fontain, Leal & Venema 2010)
 - basic positions are binary relations: $R \in \mathcal{P}(A \times A)$
 - R corresponds to $\bigwedge \{\Theta(a) \mid a \in \operatorname{Rng} R\}$
 - \exists wins a match $\rho = R_0 R_1 ...$ if there is no bad trace through ρ
- ▶ \exists has a winning strategy in $S(\mathbb{A})$ iff $L(\mathbb{A}) \neq \emptyset$

▶ Consequence game C(A, A')

- ▶ Consequence game C(A, A')
 - cf. $\mathcal{S}(\mathbb{A}) \multimap \mathcal{S}(\mathbb{A}')$
 - basic positions are pairs of binary relations: (R, R')
 - winning condition in terms of trace reflection

- ▶ Consequence game $C(\mathbb{A}, \mathbb{A}')$
 - cf. $\mathcal{S}(\mathbb{A}) \multimap \mathcal{S}(\mathbb{A}')$
 - basic positions are pairs of binary relations: (R, R')
 - winning condition in terms of trace reflection
- ▶ $\mathbb{A} \vDash_{\mathcal{C}} \mathbb{A}'$ implies that $L(\mathbb{A}) \subseteq L(\mathbb{A}')$

- ▶ Consequence game $C(\mathbb{A}, \mathbb{A}')$
 - cf. $\mathcal{S}(\mathbb{A}) \multimap \mathcal{S}(\mathbb{A}')$
 - basic positions are pairs of binary relations: (R, R')
 - winning condition in terms of trace reflection
- $ightharpoonup \mathbb{A} \vDash_{C} \mathbb{A}'$ implies that $L(\mathbb{A}) \subseteq L(\mathbb{A}')$ but not vice versa

Special automata

 $lackbox{ Disjunctive automata, }\Theta:A
ightarrow\mathtt{1ML}^d_\mathsf{T}$

$$\texttt{LitC}(X) \ \pi ::= \bot \mid \top \mid p \land \pi \mid \neg p \land \pi$$

$$1ML_{\mathsf{T}}^{d}(\mathsf{X},A) \ \alpha ::= \bot \mid \pi \wedge \nabla \beta \mid \alpha \vee \alpha,$$

where $\pi \in LitC(X)$ and $\beta \in TA$.

Special automata

▶ Semi-disjunctive automata, $\Theta: A \to 1 \text{ML}_{T}^{s(C)}(X, A)$ The set of *(zero-step) C-safe conjunctions* $\text{Conj}_{0}^{C}(A)$ contains formulas of the form $\bigwedge B$ with $B \subseteq A$, such that: for all $b_1 \neq b_2 \in B \cap C$, either b_1 or b_2 has the maximal even parity in C.

$$ML_T^{s(C)}(X, A) \alpha ::= \bot \mid \pi \wedge \nabla \gamma \mid \alpha \vee \alpha,$$

where $\pi \in LitC(X)$ and $\gamma \in TConj_0^C(A)$.

Thin relations

▶ The *(directed) graph* of \mathbb{A} is the structure $(A, E_{\mathbb{A}})$, where $aE_{\mathbb{A}}b$ if a occurs in $\Theta(b)$. The relation $\triangleleft_{\mathbb{A}}$ denotes the transitive closure of $E_{\mathbb{A}}$.

Thin relations

- ▶ The (directed) graph of \mathbb{A} is the structure $(A, E_{\mathbb{A}})$, where $aE_{\mathbb{A}}b$ if a occurs in $\Theta(b)$. The relation $\lhd_{\mathbb{A}}$ denotes the transitive closure of $E_{\mathbb{A}}$.
 - $ightharpoonup R: A \rightarrow A$ is thin with respect to \mathbb{A} and a if:
- (1) for all $b \in A$ with aRb we have $a \triangleleft_{\mathbb{A}} b$;
- (2) for all $b_1, b_2 \in A$ with $b_1, b_2 \in R[a] \cap C_a$, either $b_1 = b_2$ or one of b_1 and b_2 is a maximal even element of C_a .

We call R \mathbb{A} -thin or simply thin, if it is thin with respect \mathbb{A} and all $a \in A$.

Thin relations

- ▶ The *(directed) graph* of \mathbb{A} is the structure $(A, E_{\mathbb{A}})$, where $aE_{\mathbb{A}}b$ if a occurs in $\Theta(b)$. The relation $\triangleleft_{\mathbb{A}}$ denotes the transitive closure of $E_{\mathbb{A}}$.
- (1) for all $b \in A$ with aRb we have $a \triangleleft_{\mathbb{A}} b$;
- (2) for all $b_1, b_2 \in A$ with $b_1, b_2 \in R[a] \cap C_a$, either $b_1 = b_2$ or one of b_1 and b_2 is a maximal even element of C_a .

We call R \mathbb{A} -thin or simply thin, if it is thin with respect \mathbb{A} and all $a \in A$.

Fact: For a stream $\rho=R_1R_2R_3...$ of thin relations there exists a finite collection F of traces on ρ such that any trace t on ρ is bad if and only if there is some $t'\in F$ cofinally equal to t.

Thin satisfiability game

In $S_{thin}(\mathbb{A})$, \forall has to guarantee that all basic positions are thin relations.

A thin refutation is a winning strategy for \forall in $S_{thin}(\mathbb{A})$.

Thin satisfiability game

In $S_{thin}(\mathbb{A})$, \forall has to guarantee that all basic positions are thin relations.

A thin refutation is a winning strategy for \forall in $S_{thin}(\mathbb{A})$.

Proposition

Given a semi-disjunctive automaton \mathbb{A} , then \exists (\forall , respectively) has a winning strategy in $\mathcal{S}(\mathbb{A})$ if and only if \exists (\forall , respectively) has a winning strategy in $\mathcal{S}_{thin}(\mathbb{A})$.

Lemma (cf. Kozen)

Given an automaton \mathbb{A} , if $tr(\mathbb{A})$ is consistent, then \exists has a winning strategy in the thin satisfiability game for \mathbb{A} .

Lemma (cf. Kozen)

Given an automaton \mathbb{A} , if $tr(\mathbb{A})$ is consistent, then \exists has a winning strategy in the thin satisfiability game for \mathbb{A} .

Theorem

For every formula $\varphi \in \mu \mathtt{ML}_\mathsf{T}$, there is a semantically equivalent disjunctive automaton $\mathbb D$ such that $\vdash_{\mathsf K} \varphi \to \mathsf{tr}(\mathbb D)$.

Every consistent formula $\varphi \in \mu \mathtt{ML}_\mathsf{T}$ is satisfiable.

Every consistent formula $\varphi \in \mu ML_T$ is satisfiable.

Proof.

There exists a semantically equivalent disjunctive automaton \mathbb{D} such that $tr(\mathbb{D})$ is consistent too.

Every consistent formula $\varphi \in \mu ML_T$ is satisfiable.

Proof.

There exists a semantically equivalent disjunctive automaton \mathbb{D} such that $tr(\mathbb{D})$ is consistent too.

Now by Lemma \exists has a winning strategy in $S_{thin}(\mathbb{D})$.

Every consistent formula $\varphi \in \mu ML_T$ is satisfiable.

Proof.

There exists a semantically equivalent disjunctive automaton \mathbb{D} such that $tr(\mathbb{D})$ is consistent too.

Now by Lemma \exists has a winning strategy in $\mathcal{S}_{thin}(\mathbb{D})$. But \mathbb{D} is disjunctive and hence semi-disjunctive, and so by Proposition \exists also has a winning strategy in $\mathcal{S}(\mathbb{D})$.

Work in progress

- Obtain completeness for ∇-based μ-calculus for other functors, including the monotone μ-calculus
- Obtain conditions on functor, language and proof system for which one-step completeness + Kozen axiomatization gives completeness