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Standard µ-calculus

Syntax:

ϕ ::= > | ⊥ | p | ϕ ∨ ϕ | ϕ ∧ ϕ | ♦ϕ | �ϕ | ¬ϕ | µ.pϕ′ | νp.ϕ′
(provided that all occurrences of p in ϕ′ are positive)

Semantics:

Jµp.ϕKS,V :=
⋂
{U ∈ PS | JϕKS[x 7→U] ⊆ U}

Jνp.ϕKS,V :=
⋃
{U ∈ PS | U ⊆ JϕKS[x 7→U]}
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Completeness

Kozen Axiomatisation:

• complete calculus for modal logic

• ϕ(µp.ϕ) `K µp.ϕ

• if ϕ(ψ) `K ψ then µp.ϕ `K ψ

(ϕ `K ψ abbreviates `K ϕ→ ψ)

Theorem (Kozen 1983)
`K is sound and complete for aconjunctive formulas.

Theorem (Walukiewicz 1995)
`K is sound and complete for all formulas.

Question
How to generalise this to similar logics?
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Coalgebraic fixpoint logic

I Given a functor T we define Tω as:

TωX =
⋃
{TX ′ | X ′ ⊆ X , X ′ is finite }.

Then for every set X we define the function

BaseX : TωX → PωX
α 7→

⋂
{X ′ ⊆ X | α ∈ TX ′}.

Syntax of µMLT:

ϕ ::= ⊥ | > | p | ϕ ∨ ϕ | ϕ ∧ ϕ | ∇α | ¬ϕ | µp.ϕ | νp.ϕ

with α ∈ Tω(µMLT). No occurrence of p in ϕ may be in the scope
of an odd number of negations.
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Coalgebraic fixpoint logic
Semantics:

I Given a functor T and a binary relation R : X1 → X2 we define a
relation TR : TX1 → TX2 by:

TR := {((Tπ1)ρ, (Tπ2)ρ) | ρ ∈ TR}.

TX1 TR
Tπ1oo Tπ2 // TX2

I Formulas of µMLT will be interpreted over T-models
S = (S , σ,m) with:
• S is a set
• σ : S → TS is a coalgebra structure
• m : S → PX is a marking.

We sometimes denote (S , σ,m) by (S , σm).
The satisfaction relation 
m is inductively defined:

s 
m ∇α iff (σm(s), α) ∈ T(
m).
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Coalgebraic fixpoint logic

Example: The standard µ-calculus

Set T to be the powerset functor P:

∇Φ ≡ �
∨

Φ ∧
∧
♦Φ;

♦ϕ ≡ ∇{ϕ,>} and �ϕ ≡ ∇∅ ∨ {ϕ}.
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Coalgebraic fixpoint logic

• Axiomatization of µMLT: complete axiomatixation for MLT
(Kupke, Kurz & Venema 2012) + axioms and rules for
fixpoint operators

• Equivalence of µMLT-formulas and parity T-automata holds
(Venema 2006)

Question: Can we prove a completeness result for µMLT? Yes!
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Our approach: Principles

• Separate the dynamics from combinatorics
Dynamics: Coalgebra
Combinatorics: Use binary relations to deal with trace
combinatorics (trace management)

• Focus on automata rather than formulas
Automata:

+ Uniform, ‘clean’ presentation of fixpoint formulas
+ Excellent framework for developing trace theory
+ Direct formulation of simulation theorem
? Automata and proof theory
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Formulas and Automata

Theorem

There are maps A− : µMLT → Aut(ML1) and tr : Aut(ML1)→ µMLT
such that:

(1) preserve meaning: ϕ ≡ Aϕ and A ≡ tr(A)

(2) satisfy ϕ ≡K tr(Aϕ)

(3) interact nicely with Booleans, modality, fixpoints, and
substitution.

Item (2) enables us to apply proof-theoretic concepts, such as
consistency, to automata.
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I Satisfiability game S(A) (Fontain, Leal & Venema 2010)

• basic positions are binary relations: R ∈ P(A× A)

• R corresponds to
∧
{Θ(a) | a ∈ RngR}

• ∃ wins a match ρ = R0R1... if there is no bad trace through ρ

I ∃ has a winning strategy in S(A) iff L(A) 6= ∅

F. Seifan Completeness for coalgebraic fixpoint logic



I Satisfiability game S(A) (Fontain, Leal & Venema 2010)

• basic positions are binary relations: R ∈ P(A× A)

• R corresponds to
∧
{Θ(a) | a ∈ RngR}

• ∃ wins a match ρ = R0R1... if there is no bad trace through ρ

I ∃ has a winning strategy in S(A) iff L(A) 6= ∅

F. Seifan Completeness for coalgebraic fixpoint logic



Framework

I Consequence game C(A,A′)

• cf. S(A)( S(A′)
• basic positions are pairs of binary relations: (R,R ′)

• winning condition in terms of trace reflection

I A �C A′ implies that L(A) ⊆ L(A′) but not vice versa
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Special automata

I Disjunctive automata, Θ : A→ 1MLdT

LitC(X ) π ::= ⊥ | > | p ∧ π | ¬p ∧ π

1MLdT(X,A) α ::= ⊥ | π ∧∇β | α ∨ α,

where π ∈ LitC(X) and β ∈ TA.
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Special automata

I Semi-disjunctive automata, Θ : A→ 1ML
s(C)
T (X,A)

The set of (zero-step) C-safe conjunctions ConjC0 (A) contains
formulas of the form

∧
B with B ⊆ A, such that:

for all b1 6= b2 ∈ B ∩ C , either b1 or b2 has the maximal even
parity in C .

ML
s(C)
T (X,A) α ::= ⊥ | π ∧∇γ | α ∨ α,

where π ∈ LitC(X) and γ ∈ TConjC0 (A).
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Thin relations

I The (directed) graph of A is the structure (A,EA), where aEAb
if a occurs in Θ(b). The relation CA denotes the transitive closure
of EA.

I R : A→ A is thin with respect to A and a if:

(1) for all b ∈ A with aRb we have aCA b;

(2) for all b1, b2 ∈ A with b1, b2 ∈ R[a] ∩ Ca, either b1 = b2 or
one of b1 and b2 is a maximal even element of Ca.

We call R A-thin or simply thin, if it is thin with respect A and all
a ∈ A.
Fact: For a stream ρ = R1R2R3... of thin relations there exists a
finite collection F of traces on ρ such that any trace t on ρ is bad
if and only if there is some t ′ ∈ F cofinally equal to t.
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Thin satisfiability game

In Sthin(A), ∀ has to guarantee that all basic positions are
thin relations.

A thin refutation is a winning strategy for ∀ in Sthin(A).

Proposition

Given a semi-disjunctive automaton A, then ∃ (∀, respectively) has
a winning strategy in S(A) if and only if ∃ (∀, respectively) has a
winning strategy in Sthin(A).
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Lemma (cf. Kozen)

Given an automaton A, if tr(A) is consistent, then ∃ has a winning
strategy in the thin satisfiability game for A.

Theorem

For every formula ϕ ∈ µMLT, there is a semantically equivalent
disjunctive automaton D such that `K ϕ→ tr(D).
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Theorem (Completeness)

Every consistent formula ϕ ∈ µMLT is satisfiable.

Proof.

There exists a semantically equivalent disjunctive automaton D
such that tr(D) is consistent too.
Now by Lemma ∃ has a winning strategy in Sthin(D). But D is
disjunctive and hence semi-disjunctive, and so by Proposition ∃
also has a winning strategy in S(D).
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Work in progress

• Obtain completeness for ∇-based µ-calculus for other
functors, including the monotone µ-calculus

• Obtain conditions on functor, language and proof system for
which one-step completeness + Kozen axiomatization gives
completeness
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